Multicomponent Fuzzy Model for Evaluating the Energy Efficiency of Chemical and Power Engineering Processes of Drying of the Multilayer Mass of Phosphorite Pellets


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

A multicomponent fuzzy model was proposed for evaluating the energy efficiency of the chemical and power engineering processes of the drying of a dynamic multilayer mass of phosphorite pellets in a complex multistage chemical and power engineering system (roasting conveyor machine). The developed model includes a set of fuzzy component models for analyzing the chemical and power engineering processes of pellet drying corresponding to the results of the decomposition of these processes, a set of neuro-fuzzy production models for evaluating the energy efficiency of the individual stages of the chemical and power engineering processes of pellet drying, and a neuro-fuzzy production model of generalized evaluation of the energy efficiency of the chemical and power engineering process of pellet drying. The use of the proposed model makes it possible to evaluate the energy efficiency of both the individual stages and, in general, the chemical and power engineering process of phosphorite pellet drying under conditions of uncertainty of their thermophysical characteristics and the processes themselves; to perform online structural adjustment and parametric adaptation of the model when the mode and chemical and power engineering process of pellet drying are changed; to perform online evaluation of the energy efficiency of the chemical and power engineering process of pellet drying; and to provide quality improvement and speed of decision making on optimization of the chemical and power engineering process of pellet drying to increase the energy efficiency of these processes.

Об авторах

V. Bobkov

Moscow Power Engineering Institute (National Research University) (MEI)

Автор, ответственный за переписку.
Email: vovabobkoff@mail.ru
Россия, Smolensk, 214013

V. Borisov

Moscow Power Engineering Institute (National Research University) (MEI)

Email: vovabobkoff@mail.ru
Россия, Smolensk, 214013

M. Dli

Moscow Power Engineering Institute (National Research University) (MEI)

Email: vovabobkoff@mail.ru
Россия, Smolensk, 214013

V. Meshalkin

Mendeleev University of Chemical Technology of Russia

Email: vovabobkoff@mail.ru
Россия, Moscow, 125047

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Ltd., 2018

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).