Traces and Supertraces on Symplectic Reflection Algebras
- 作者: Konstein S.E.1, Tyutin I.V.1,2
-
隶属关系:
- Lebedev Physical Institute
- Tomsk State Pedagogical University
- 期: 卷 198, 编号 2 (2019)
- 页面: 249-255
- 栏目: Article
- URL: https://journals.rcsi.science/0040-5779/article/view/172106
- DOI: https://doi.org/10.1134/S0040577919020065
- ID: 172106
如何引用文章
详细
The symplectic reflection algebra H1,ν (G) has a T(G)-dimensional space of traces, and if it is regarded as a superalgebra with a natural parity, then it has an S(G)-dimensional space of supertraces. The values of T(G) and S(G) depend on the symplectic reflection group G and are independent of the parameter ν. We present values of T(G) and S(G) for the groups generated by the root systems and for the groups G = Γ ≀ SN, where Γ is a finite subgroup of Sp(2,ℂ).
作者简介
S. Konstein
Lebedev Physical Institute
编辑信件的主要联系方式.
Email: konstein@lpi.ru
俄罗斯联邦, Moscow
I. Tyutin
Lebedev Physical Institute; Tomsk State Pedagogical University
Email: konstein@lpi.ru
俄罗斯联邦, Moscow; Tomsk
补充文件
