Unnormalized Tomograms and Quasidistributions of Quantum States


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We consider tomograms and quasidistributions, such as the Wigner functions, the Glauber–Sudarshan P-functions, and the Husimi Q-functions, that violate the standard normalization condition for probability distribution functions. We introduce special conditions for theWigner function to determine the tomogram with the Radon transform and study three different examples of states like the de Broglie plane wave, the Moshinsky shutter problem, and the stationary state of a charged particle in a uniform constant electric field. We show that their tomograms and quasidistribution functions expressed in terms of the Dirac delta function, the Airy function, and Fresnel integrals violate the standard normalization condition and the density matrix of the state therefore cannot always be reconstructed. We propose a method that allows circumventing this problem using a special tomogram in the limit form.

作者简介

V. Man’ko

Lebedev Physical Institute, RAS; Moscow Institute of Physics and Technology

编辑信件的主要联系方式.
Email: kimo1@mail.ru
俄罗斯联邦, Moscow; Dolgoprudny, Moscow Oblast

L. Markovich

Kharkevich Institute for Information Transmission Problems; Trapeznikov Institute of Control Sciences; International Center for Quantum Optics and Quantum Technologies (the Russian Quantum Center)

Email: kimo1@mail.ru
俄罗斯联邦, Moscow; Moscow; Moscow

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018