A Direct Algorithm for Constructing Recursion Operators and Lax Pairs for Integrable Models
- 作者: Habibullin I.T.1,2, Khakimova A.R.1,2
-
隶属关系:
- Institute of Mathematics
- Bashkir State University
- 期: 卷 196, 编号 2 (2018)
- 页面: 1200-1216
- 栏目: Article
- URL: https://journals.rcsi.science/0040-5779/article/view/171888
- DOI: https://doi.org/10.1134/S004057791808007X
- ID: 171888
如何引用文章
详细
We suggest an algorithm for seeking recursion operators for nonlinear integrable equations. We find that the recursion operator R can be represented as a ratio of the form R = L1−1 L2, where the linear differential operators L1 and L2 are chosen such that the ordinary differential equation (L2 −λL1)U = 0 is consistent with the linearization of the given nonlinear integrable equation for any value of the parameter λ ∈ C. To construct the operator L1, we use the concept of an invariant manifold, which is a generalization of a symmetry. To seek L2, we then take an auxiliary linear equation related to the linearized equation by a Darboux transformation. It is remarkable that the equation L1\(\tilde U\) = L2U defines a B¨acklund transformation mapping a solution U of the linearized equation to another solution \(\tilde U\) of the same equation. We discuss the connection of the invariant manifold with the Lax pairs and the Dubrovin equations.
作者简介
I. Habibullin
Institute of Mathematics; Bashkir State University
编辑信件的主要联系方式.
Email: habibullinismagil@gmail.com
俄罗斯联邦, Ufa; Ufa
A. Khakimova
Institute of Mathematics; Bashkir State University
Email: habibullinismagil@gmail.com
俄罗斯联邦, Ufa; Ufa
补充文件
