Scalarization of stationary semiclassical problems for systems of equations and its application in plasma physics


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We propose a method for determining asymptotic solutions of stationary problems for pencils of differential (and pseudodifferential) operators whose symbol is a self-adjoint matrix. We show that in the case of constant multiplicity, the problem of constructing asymptotic solutions corresponding to a distinguished eigenvalue (called an effective Hamiltonian, term, or mode) reduces to studying objects related only to the determinant of the principal matrix symbol and the eigenvector corresponding to a given (numerical) value of this effective Hamiltonian. As an example, we show that stationary solutions can be effectively calculated in the problem of plasma motion in a tokamak.

作者简介

A. Anikin

Ishlinskii Institute for Problems in Mechanics; Moscow Institute of Physics and Technology; Bauman Moscow State Technical University

编辑信件的主要联系方式.
Email: anikin83@inbox.ru
俄罗斯联邦, Moscow; Dolgoprudny, Moscow Oblast; Moscow

S. Dobrokhotov

Ishlinskii Institute for Problems in Mechanics; Moscow Institute of Physics and Technology

Email: anikin83@inbox.ru
俄罗斯联邦, Moscow; Dolgoprudny, Moscow Oblast

A. Klevin

Ishlinskii Institute for Problems in Mechanics; Moscow Institute of Physics and Technology

Email: anikin83@inbox.ru
俄罗斯联邦, Moscow; Dolgoprudny, Moscow Oblast

B. Tirozzi

ENEA Centro Ricerch di Frascati

Email: anikin83@inbox.ru
意大利, Frascati (Roma)

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017