Some solvability problems for the Boltzmann equation in the framework of the Shakhov model
- Autores: Khachatryan A.K.1, Khachatryan A.A.1
-
Afiliações:
- Faculty of Higher Mathematics and Theoretical Mechanics
- Edição: Volume 191, Nº 3 (2017)
- Páginas: 856-869
- Seção: Article
- URL: https://journals.rcsi.science/0040-5779/article/view/171268
- DOI: https://doi.org/10.1134/S004057791706006X
- ID: 171268
Citar
Resumo
We consider the nonlinear Boltzmann equation in the framework of the Shakhov model for the classical problem of gas flow in a plane layer. The problem reduces to a system of nonlinear integral equations. The nonlinearity of the studied system can be partially simplified by passing to a new argument depending on the solution of the problem itself. We prove the existence theorem for a unique solution of the linear system and the existence theorem for a positive solution of the nonlinear Urysohn equation. We determine the temperature jumps on the lower and upper walls in the linear and nonlinear cases, and it turns out that the difference between them is rather small.
Palavras-chave
Sobre autores
A. Khachatryan
Faculty of Higher Mathematics and Theoretical Mechanics
Autor responsável pela correspondência
Email: aghavard59@mail.ru
Armênia, Erevan
A. Khachatryan
Faculty of Higher Mathematics and Theoretical Mechanics
Email: aghavard59@mail.ru
Armênia, Erevan
Arquivos suplementares
