Higher-order analogues of the unitarity condition for quantum R-matrices
- 作者: Zotov A.V.1
-
隶属关系:
- Steklov Mathematical Institute of Russian Academy of Sciences
- 期: 卷 189, 编号 2 (2016)
- 页面: 1554-1562
- 栏目: Article
- URL: https://journals.rcsi.science/0040-5779/article/view/170819
- DOI: https://doi.org/10.1134/S0040577916110027
- ID: 170819
如何引用文章
详细
We derive a family of nth-order identities for quantum R-matrices of the Baxter–Belavin type in the fundamental representation. The set of identities includes the unitarity condition as the simplest case (n = 2). Our study is inspired by the fact that the third-order identity provides commutativity of the Knizhnik–Zamolodchikov–Bernard connections. On the other hand, the same identity yields the R-matrix-valued Lax pairs for classical integrable systems of Calogero type, whose construction uses the interpretation of the quantum R-matrix as a matrix generalization of the Kronecker function. We present a proof of the higher-order scalar identities for the Kronecker functions, which is then naturally generalized to R-matrix identities.
作者简介
A. Zotov
Steklov Mathematical Institute of Russian Academy of Sciences
编辑信件的主要联系方式.
Email: zotov@mi.ras.ru
俄罗斯联邦, Moscow
补充文件
