Pauli isotonic oscillatorwith an anomalous magnetic moment in the presence of the Aharonov–Bohm effect: Laplace transform approach


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A strong magnetic field significantly affects the intrinsic magnetic moment of fermions. In quantum electrodynamics, it was shown that the anomalous magnetic moment of an electron arises kinematically, while it results from a dynamical interaction with an external magnetic field for hadrons (proton). Taking the anomalous magnetic moment of a fermion into account, we find an exact expression for the boundstate energy and the corresponding eigenfunctions of a two-dimensional nonrelativistic spin-1/2 harmonic oscillator with a centripetal barrier (known as the isotonic oscillator) including an Aharonov–Bohm term in the presence of a strong magnetic field. We use the Laplace transform method in the calculations. We find that the singular solution contributes to the phase of the wave function at the origin and the phase depends on the spin and magnetic flux.

作者简介

M. Roshanzamir-Nikou

Department of Physics, School of Sciences

编辑信件的主要联系方式.
Email: m.roshanzamir@urmia.ac.ir
伊朗伊斯兰共和国, Urmia

H. Goudarzi

Department of Physics, School of Sciences

Email: m.roshanzamir@urmia.ac.ir
伊朗伊斯兰共和国, Urmia

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016