Geometric Solutions of the Strict KP Hierarchy


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Splitting the algebra Psd of pseudodifferential operators into the Lie subalgebra of all differential operators without a constant term and the Lie subalgebra of all integral operators leads to an integrable hierarchy called the strict KP hierarchy. We consider two Psd modules, a linearization of the strict KP hierarchy and its dual, which play an essential role in constructing solutions geometrically. We characterize special vectors, called wave functions, in these modules; these vectors lead to solutions. We describe a relation between the KP hierarchy and its strict version and present an infinite-dimensional manifold from which these special vectors can be obtained. We show how a solution of the strict KP hierarchy can be constructed for any subspace W in the Segal–Wilson Grassmannian of a Hilbert space and any line ℓ in W. Moreover, we describe the dual wave function geometrically and present a group of commuting flows that leave the found solutions invariant.

Sobre autores

G. Helminck

Korteweg–de Vries Institute for Mathematics

Autor responsável pela correspondência
Email: g.f.helminck@uva.nl
Países Baixos, Amsterdam

E. Panasenko

Derzhavin State University

Autor responsável pela correspondência
Email: panlena_t@mail.ru
Rússia, Tambov

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2019