Absence of Gaps in a Lower Part of the Spectrum of a Laplacian with Frequent Alternation of Boundary Conditions in a Strip
- Авторы: Borisov D.I.1,2,3
-
Учреждения:
- Institute of Mathematics with Computing Centre
- Akhmulla Bashkir State Pedagogical University
- University of Hradec Králové
- Выпуск: Том 195, № 2 (2018)
- Страницы: 690-703
- Раздел: Article
- URL: https://journals.rcsi.science/0040-5779/article/view/171764
- DOI: https://doi.org/10.1134/S0040577918050057
- ID: 171764
Цитировать
Аннотация
We consider the Laplacian in a planar infinite straight strip with frequent alternation of boundary conditions. We show that for a sufficiently small alternation period, there are no gaps in a lower part of the spectrum. In terms of certain numbers and functions, we write an explicit upper bound for the period and an expression for the length of the lower part of the spectrum in which the absence of gaps is guaranteed.
Об авторах
D. Borisov
Institute of Mathematics with Computing Centre; Akhmulla Bashkir State Pedagogical University; University of Hradec Králové
Автор, ответственный за переписку.
Email: borisovdi@yandex.ru
Россия, RAS, Ufa; Ufa; Hradec Králové
Дополнительные файлы
