Asymptotic Analysis of Multilump Solutions of the Kadomtsev–Petviashvili-I Equation
- Авторы: Chang J.1
-
Учреждения:
- Department of Computer Science and Information Engineering
- Выпуск: Том 195, № 2 (2018)
- Страницы: 676-689
- Раздел: Article
- URL: https://journals.rcsi.science/0040-5779/article/view/171760
- DOI: https://doi.org/10.1134/S0040577918050045
- ID: 171760
Цитировать
Аннотация
We construct lump solutions of the Kadomtsev–Petviashvili-I equation using Grammian determinants in the spirit of the works by Ohta and Yang. We show that the peak locations depend on the real roots of the Wronskian of the orthogonal polynomials for the asymptotic behaviors in some particular cases. We also prove that if the time goes to −∞, then all the peak locations are on a vertical line, while if the time goes to ∞, then they are all on a horizontal line, i.e., a π/2 rotation is observed after interaction.
Ключевые слова
Об авторах
Jen-Hsu Chang
Department of Computer Science and Information Engineering
Автор, ответственный за переписку.
Email: jhchang@ndu.edu.tw
Тайвань, Tau-Yuan
Дополнительные файлы
