Kulish–Sklyanin-type models: Integrability and reductions


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We start with a Riemann–Hilbert problem (RHP) related toBD.I-type symmetric spaces SO(2r + 1)/S(O(2r − 2s+1) ⊗ O(2s)), s ≥ 1. We consider two RHPs: the first is formulated on the real axis R in the complexplane; the second, on RiR. The first RHP for s = 1 allows solving the Kulish–Sklyanin (KS) model; the second RHP is related to a new type of KS model. We consider an important example of nontrivial deep reductions of the KS model and show its effect on the scattering matrix. In particular, we obtain new two-component nonlinear Schrödinger equations. Finally, using the Wronski relations, we show that the inverse scattering method for KS models can be understood as generalized Fourier transforms. We thus find a way to characterize all the fundamental properties of KS models including the hierarchy of equations and the hierarchy of their Hamiltonian structures.

Sobre autores

V. Gerdjikov

Institute of Mathematics and Informatics; Institute for Advanced Physical Studies; Institute for Nuclear Research and Nuclear Energy

Autor responsável pela correspondência
Email: vgerdjikov@math.bas.bg
Bulgária, Sofia; Sofia; Sofia

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2017