Matrix model and dimensions at hypercube vertices
- Авторы: Morozov A.Y.1,2,3, Morozov A.A.1,2,3,4, Popolitov A.V.1,2,5
-
Учреждения:
- Institute for Theoretical and Experimental Physics
- Institute for Information Transmission Problems
- National Research Nuclear University MEPhI
- Laboratory of Quantum Topology
- Korteweg–de Vries Institute for Mathematics
- Выпуск: Том 192, № 1 (2017)
- Страницы: 1039-1079
- Раздел: Article
- URL: https://journals.rcsi.science/0040-5779/article/view/171325
- DOI: https://doi.org/10.1134/S004057791707008X
- ID: 171325
Цитировать
Аннотация
We consider correlation functions in the Chern–Simons theory (knot polynomials) using an approach in which each knot diagram is associated with a hypercube. The number of cycles into which the link diagram is decomposed under different resolutions plays a central role. Certain functions of these numbers are further interpreted as dimensions of graded spaces associated with hypercube vertices, but finding these functions is a somewhat nontrivial problem. It was previously suggested to solve this problem using the matrix model technique by analogy with topological recursion. We develop this idea and provide a wide collection of nontrivial examples related to both ordinary and virtual knots and links. The most powerful version of the formalism freely connects ordinary knots/links with virtual ones. Moreover, it allows going beyond the limits of the knot-related set of (2, 2)-valent graphs.
Ключевые слова
Об авторах
A. Morozov
Institute for Theoretical and Experimental Physics; Institute for Information Transmission Problems; National Research Nuclear University MEPhI
Автор, ответственный за переписку.
Email: morozov@itep.ru
Россия, Moscow; Moscow; Moscow
A. Morozov
Institute for Theoretical and Experimental Physics; Institute for Information Transmission Problems; National Research Nuclear University MEPhI; Laboratory of Quantum Topology
Email: morozov@itep.ru
Россия, Moscow; Moscow; Moscow; Chelyabinsk
A. Popolitov
Institute for Theoretical and Experimental Physics; Institute for Information Transmission Problems; Korteweg–de Vries Institute for Mathematics
Email: morozov@itep.ru
Россия, Moscow; Moscow; Amsterdam
Дополнительные файлы
