Invariance of the generalized oscillator under a linear transformation of the related system of orthogonal polynomials
- Autores: Borzov V.V.1, Damaskinsky E.V.2
-
Afiliações:
- St. Petersburg State University of Telecommunications
- Military Institute (Engineering-Technical)
- Edição: Volume 190, Nº 2 (2017)
- Páginas: 228-236
- Seção: Article
- URL: https://journals.rcsi.science/0040-5779/article/view/170989
- DOI: https://doi.org/10.1134/S0040577917020052
- ID: 170989
Citar
Resumo
We consider the families of polynomials P = { Pn(x)}n=0∞ and Q = { Qn(x)}n=0∞ orthogonal on the real line with respect to the respective probability measures μ and ν. We assume that { Qn(x)}n=0∞ and {Pn(x)}n=0∞ are connected by linear relations. In the case k = 2, we describe all pairs (P,Q) for which the algebras AP and AQ of generalized oscillators generated by { Qn(x)}n=0∞ and { Pn(x)}n=0∞ coincide. We construct generalized oscillators corresponding to pairs (P,Q) for arbitrary k ≥ 1.
Palavras-chave
Sobre autores
V. Borzov
St. Petersburg State University of Telecommunications
Autor responsável pela correspondência
Email: borzov.vadim@yandex.ru
Rússia, St. Petersburg
E. Damaskinsky
Military Institute (Engineering-Technical)
Email: borzov.vadim@yandex.ru
Rússia, St. Petersburg
Arquivos suplementares
