Algebro-Geometric Integration of the Modified Belov—Chaltikian Lattice Hierarchy


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Using the Lenard recurrence relations and the zero-curvature equation, we derive the modified Belov—Chaltikian lattice hierarchy associated with a discrete 3×3 matrix spectral problem. Using the characteristic polynomial of the Lax matrix for the hierarchy, we introduce a tri gonal curve Km−2 of arithmetic genus m−2. We study the asymptotic properties of the Baker—Akhiezer function and the algebraic function carrying the data of the divisor near \(P_{\infty_{1}}\), \(P_{\infty_{2}}\), \(P_{\infty_{3}}\), and P0 on Km−2. Based on the theory of trigonal curves, we obtain the explicit theta-function representations of the algebraic function, the Baker—Akhiezer function, and, in particular, solutions of the entire modified Belov—Chaltikian lattice hierarchy.

作者简介

Xianguo Geng

School of Mathematics and Statistics

Email: weijiaozzu@sohu.com
中国, Zhengzhou

Jiao Wei

School of Mathematics and Statistics

编辑信件的主要联系方式.
Email: weijiaozzu@sohu.com
中国, Zhengzhou

Xin Zeng

School of Mathematics and Statistics

Email: weijiaozzu@sohu.com
中国, Zhengzhou

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2019