Integrable Potentials by Darboux Transformations in Rings and Quantum and Classical Problems


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We study a problem in associative rings of left and right factorization of a polynomial differential operator regarded as an evolution operator. In a direct sum of rings, the polynomial arising in the problem of dividing an operator by an operator for two commuting operators leads to a time-dependent left/right Darboux transformation based on an intertwining relation and either Miura maps or generalized Burgers equations. The intertwining relations lead to a differential equation including differentiations in a weak sense. In view of applications to operator problems in quantum and classical mechanics, we derive the direct quasideterminant or dressing chain formulas. We consider the transformation of creation and annihilation operators for specified matrix rings and study an example of the Dicke model.

Авторлар туралы

S. Leble

Immanuel Kant Baltic Federal University

Хат алмасуға жауапты Автор.
Email: lebleu@mail.ru
Ресей, Kaliningrad

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2018