Higher-Order Dispersive Deformations of Multidimensional Poisson Brackets of Hydrodynamic Type


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The theory of multidimensional Poisson vertex algebras provides a completely algebraic formalism for studying the Hamiltonian structure of partial differential equations for any number of dependent and independent variables. We compute the cohomology of the Poisson vertex algebras associated with twodimensional, two-component Poisson brackets of hydrodynamic type at the third differential degree. This allows obtaining their corresponding Poisson–Lichnerowicz cohomology, which is the main building block of the theory of their deformations. Such a cohomology is trivial neither in the second group, corresponding to the existence of a class of nonequivalent infinitesimal deformations, nor in the third group, corresponding to the obstructions to extending such deformations.

Sobre autores

M. Casati

Marie Curie fellow of the Istituto Nazionale di Alta Matematica; School of Mathematics, Statistics, and Actuarial Sciences

Autor responsável pela correspondência
Email: M.Casati@kent.ac.uk
Itália, Roma; Canterbury

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018