Zubarev’s Nonequilibrium Statistical Operator Method in the Generalized Statistics of Multiparticle Systems


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We present a generalization of Zubarev’s nonequilibrium statistical operator method based on the principle of maximum Renyi entropy. In the framework of this approach, we obtain transport equations for the basic set of parameters of the reduced description of nonequilibrium processes in a classical system of interacting particles using Liouville equations with fractional derivatives. For a classical systems of particles in a medium with a fractal structure, we obtain a non-Markovian diffusion equation with fractional spatial derivatives. For a concrete model of the frequency dependence of a memory function, we obtain generalized Kettano-type diffusion equation with the spatial and temporal fractality taken into account. We present a generalization of nonequilibrium thermofield dynamics in Zubarev’s nonequilibrium statistical operator method in the framework of Renyi statistics.

作者简介

P. Glushak

Institute of Physics of Condensed Systems

Email: mtoc2010@ukr.net
乌克兰, Lviv

B. Markiv

GlobalLogic Ukraine

Email: mtoc2010@ukr.net
乌克兰, Lviv

M. Tokarchuk

Institute of Physics of Condensed Systems

编辑信件的主要联系方式.
Email: mtoc2010@ukr.net
乌克兰, Lviv

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018