🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Field theory and anisotropy of a cubic ferromagnet near the Curie point


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

It is known that critical fluctuations can change the effective anisotropy of a cubic ferromagnet near the Curie point. If the crystal undergoes a phase transition into the orthorhombic phase and the initial anisotropy is not too strong, then the effective anisotropy acquires the universal value A* = v*/u* at Tc, where u* and v* are the coordinates of the cubic fixed point of the renormalization group equations in the scaling equation of state and expressions for nonlinear susceptibilities. Using the pseudo-ϵ-expansion method, we find the numerical value of the anisotropy parameter A at the critical point. Padé resummation of the six-loop pseudo-ϵ-expansions for u*, v*, and A* leads to the estimate A* = 0.13 ± 0.01, giving evidence that observation of anisotropic critical behavior of cubic ferromagnets in physical and computer experiments is entirely possible.

Sobre autores

A. Kudlis

St. Petersburg State University; ITMO University

Autor responsável pela correspondência
Email: ais2002@mail.ru
Rússia, St. Petersburg, Staryi Petergof; St. Petersburg

A. Sokolov

St. Petersburg State University

Email: ais2002@mail.ru
Rússia, St. Petersburg, Staryi Petergof

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2017