Solving dynamical equations in general homogeneous isotropic cosmologies with a scalaron


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

We consider gauge-dependent dynamical equations describing homogeneous isotropic cosmologies coupled to a scalar field ψ (scalaron). For flat cosmologies (k = 0), we analyze the gauge-independent equation describing the differential χ(α) ≡ ψ (a) of the map of the metric a to the scalaron field ψ, which is the main mathematical characteristic of a cosmology and locally defines its portrait in the so-called a version. In the more customary ψ version, the similar equation for the differential of the inverse map \(\bar \chi (\psi ) \equiv \chi ^{ - 1} (\alpha )\) is solved in an asymptotic approximation for arbitrary potentials v(ψ). In the flat case, \(\bar \chi (\psi )\) and χ−1(α) satisfy first-order differential equations depending only on the logarithmic derivative of the potential, v(ψ)/v(ψ). If an analytic solution for one of the χ functions is known, then we can find all characteristics of the cosmological model. In the α version, the full dynamical system is explicitly integrable for k ≠ 0 with any potential v(α) ≡ v[ψ(α)] replacing v(ψ). Until one of the maps, which themselves depend on the potentials, is calculated, no sort of analytic relation between these potentials can be found. Nevertheless, such relations can be found in asymptotic regions or by perturbation theory. If instead of a potential we specify a cosmological portrait, then we can reconstruct the corresponding potential. The main subject here is the mathematical structure of isotropic cosmologies. We also briefly present basic applications to a more rigorous treatment of inflation models in the framework of the α version of the isotropic scalaron cosmology. In particular, we construct an inflationary perturbation expansion for χ. If the conditions for inflation to arise are satisfied, i.e., if v > 0, k = 0, χ2 < 6, and χ(α) satisfies a certain boundary condition as α→-∞, then the expansion is invariant under scaling the potential, and its first terms give the standard inflationary parameters with higher-order corrections.

Об авторах

A. Filippov

Joint Institute for Nuclear Research

Автор, ответственный за переписку.
Email: Alexandre.Filippov@jinr.ru
Россия, Dubna, Moscow Oblast

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Ltd., 2016

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».