🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Dissipative and nonunitary solutions of operator commutation relations


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We study the (generalized) semi-Weyl commutation relations UgAU* g = g(A) on Dom(A), where A is a densely defined operator and G ∋ g ↦ Ug is a unitary representation of the subgroup G of the affine group G, the group of affine orientation-preserving transformations of the real axis. If A is a symmetric operator, then the group G induces an action/flow on the operator unit ball of contracting transformations from Ker(A* - iI) to Ker(A* + iI). We establish several fixed-point theorems for this flow. In the case of one-parameter continuous subgroups of linear transformations, self-adjoint (maximal dissipative) operators associated with the fixed points of the flow yield solutions of the (restricted) generalized Weyl commutation relations. We show that in the dissipative setting, the restricted Weyl relations admit a variety of representations that are not unitarily equivalent. For deficiency indices (1, 1), the basic results can be strengthened and set in a separate case.

Sobre autores

K. Makarov

Department of Mathematics

Autor responsável pela correspondência
Email: makarovk@missouri.edu
Estados Unidos da América, Columbia, Missouri

E. Tsekanovskii

Department of Mathematics

Email: makarovk@missouri.edu
Estados Unidos da América, Lewiston, New York

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2016