Description of Solutions with the Uniton Number 3 in the Case of One Eigenvalue: Counterexample to the Dimension Conjecture
- Авторлар: Domrina A.V.1
-
Мекемелер:
- Faculty of Computational Mathematics and Cybernetics
- Шығарылым: Том 201, № 1 (2019)
- Беттер: 1413-1425
- Бөлім: Article
- URL: https://journals.rcsi.science/0040-5779/article/view/172492
- DOI: https://doi.org/10.1134/S0040577919100015
- ID: 172492
Дәйексөз келтіру
Аннотация
We explicitly describe solutions of the noncommutative unitary U (1) sigma model that represent finitedimensional perturbations of the identity operator and have only one eigenvalue and the minimum uniton number 3. We also show that the solution set M(e, r, u) of energy e and canonical rank r with the minimum uniton number u = 3 has a complex dimension greater than r for e = 4 n - 1 and r = n+1, where n ≥ 3. This disproves the dimension conjecture that holds in the case u ∈ {1, 2}.
Негізгі сөздер
Авторлар туралы
A. Domrina
Faculty of Computational Mathematics and Cybernetics
Хат алмасуға жауапты Автор.
Email: avdomrina@yandex.ru
Ресей, Moscow
Қосымша файлдар
