Cluster Toda Chains and Nekrasov Functions


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We extend the relation between cluster integrable systems and q-difference equations beyond the Painlev´e case. We consider the class of hyperelliptic curves where the Newton polygons contain only four boundary points. We present the corresponding cluster integrable Toda systems and identify their discrete automorphisms with certain reductions of the Hirota difference equation. We also construct nonautonomous versions of these equations and find that their solutions are expressed in terms of five-dimensional Nekrasov functions with Chern–Simons contributions, while these equations in the autonomous case are solved in terms of Riemann theta functions.

Авторлар туралы

M. Bershtein

Landau Institute for Theoretical Physics, RAS; Laboratory for Representation Theory and Mathematical Physics, Mathematics Faculty; Center for Advanced Studies, Skoltech; Independent University of Moscow; Institute for Information Transmission Problems, RAS

Хат алмасуға жауапты Автор.
Email: mbersht@gmail.com
Ресей, Moscow Oblast, Chernogolovka; Moscow; Moscow; Moscow; Moscow

P. Gavrylenko

Landau Institute for Theoretical Physics, RAS; Laboratory for Representation Theory and Mathematical Physics, Mathematics Faculty; Bogolyubov Institute for Theoretical Physics

Email: mbersht@gmail.com
Ресей, Moscow Oblast, Chernogolovka; Moscow; Kiev

A. Marshakov

Landau Institute for Theoretical Physics, RAS; Laboratory for Representation Theory and Mathematical Physics, Mathematics Faculty; Institute for Theoretical and Experimental Physics; Theory Department, Lebedev Physical Institute, RAS

Email: mbersht@gmail.com
Ресей, Moscow Oblast, Chernogolovka; Moscow; Moscow; Moscow

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2019