Artin Billiard: Exponential Decay of Correlation Functions


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The hyperbolic Anosov C-systems have an exponential instability of their trajectories and as such represent the most natural chaotic dynamical systems. The C-systems defined on compact surfaces of the Lobachevsky plane of constant negative curvature are especially interesting. An example of such a system was introduced in a brilliant article published in 1924 by the mathematician Emil Artin. The dynamical system is defined on the fundamental region of the Lobachevsky plane, which is obtained by identifying points congruent with respect to the modular group, the discrete subgroup of the Lobachevsky plane isometries. The fundamental region in this case is a hyperbolic triangle. The geodesic trajectories of the non-Euclidean billiard are bounded to propagate on the fundamental hyperbolic triangle. Here, we present Artin’s results, calculate the correlation functions/observables defined on the phase space of the Artin billiard, and show that the correlation functions decay exponentially with time. We use the Artin symbolic dynamics, differential geometry, and the group theory methods of Gelfand and Fomin.

Авторлар туралы

H. Poghosyan

National Science Laboratory

Email: savvidy@inp.demokritos.gr
Армения, Yerevan

H. Babujian

National Science Laboratory

Email: savvidy@inp.demokritos.gr
Армения, Yerevan

G. Savvidy

Institute of Nuclear and Particle Physics

Хат алмасуға жауапты Автор.
Email: savvidy@inp.demokritos.gr
Греция, Athens

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2018