Zone Structure of the Renormalization Group Flow in a Fermionic Hierarchical Model


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The Gaussian part of the Hamiltonian of the four-component fermion model on a hierarchical lattice is invariant under the block-spin transformation of the renormalization group with a given degree of normalization (the renormalization group parameter). We describe the renormalization group transformation in the space of coefficients defining the Grassmann-valued density of a free measure as a homogeneous quadratic map. We interpret this space as a two-dimensional projective space and visualize it as a disk. If the renormalization group parameter is greater than the lattice dimension, then the unique attractive fixed point of the renormalization group is given by the density of the Grassmann delta function. This fixed point has two different (left and right) invariant neighborhoods. Based on this, we classify the points of the projective plane according to how they tend to the attracting point (on the left or right) under iterations of the map. We discuss the zone structure of the obtained regions and show that the global flow of the renormalization group is described simply in terms of this zone structure.

Авторлар туралы

M. Missarov

Kazan Federal University

Хат алмасуға жауапты Автор.
Email: Moukadas.Missarov@kpfu.ru
Ресей, Kazan

A. Shamsutdinov

Kazan Federal University

Email: Moukadas.Missarov@kpfu.ru
Ресей, Kazan

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2018