Phase portraits of the full symmetric Toda systems on rank-2 groups


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We continue investigations begun in our previous works where we proved that the phase diagram of the Toda system on special linear groups can be identified with the Bruhat order on the symmetric group if all eigenvalues of the Lax matrix are distinct or with the Bruhat order on permutations of a multiset if there are multiple eigenvalues. We show that the phase portrait of the Toda system and the Hasse diagram of the Bruhat order coincide in the case of an arbitrary simple Lie group of rank 2. For this, we verify this property for the two remaining rank-2 groups, Sp(4,ℝ) and the real form of G2.

作者简介

A. Sorin

Joint Institute for Nuclear Research; Dubna International University; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

编辑信件的主要联系方式.
Email: sorin@theor.jinr.ru
俄罗斯联邦, Dubna, Moscow Oblast; Dubna, Moscow Oblast; Moscow

Yu. Chernyakov

Joint Institute for Nuclear Research; Institute for Theoretical and Experimental Physics

Email: sorin@theor.jinr.ru
俄罗斯联邦, Dubna, Moscow Oblast; Moscow

G. Sharygin

Joint Institute for Nuclear Research; Institute for Theoretical and Experimental Physics; Lomonosov Moscow State University

Email: sorin@theor.jinr.ru
俄罗斯联邦, Dubna, Moscow Oblast; Moscow; Moscow

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017