Integrable structures of dispersionless systems and differential geometry
- Авторлар: Odesskii A.V.1
-
Мекемелер:
- Brock University
- Шығарылым: Том 191, № 2 (2017)
- Беттер: 692-709
- Бөлім: Article
- URL: https://journals.rcsi.science/0040-5779/article/view/171213
- DOI: https://doi.org/10.1134/S0040577917050105
- ID: 171213
Дәйексөз келтіру
Аннотация
We develop the theory of Whitham-type hierarchies integrable by hydrodynamic reductions as a theory of certain differential-geometric objects. As an application, we construct Gibbons–Tsarev systems associated with the moduli space of algebraic curves of arbitrary genus and prove that the universal Whitham hierarchy is integrable by hydrodynamic reductions.
Авторлар туралы
A. Odesskii
Brock University
Хат алмасуға жауапты Автор.
Email: aodesski@brocku.ca
Канада, St. Catharines
Қосымша файлдар
