🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Local Perturbation of the Discrete Schrödinger Operator and a Generalized Chebyshev Oscillator


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We discuss the conditions under which a special linear transformation of the classical Chebyshev polynomials (of the second kind) generate a class of polynomials related to “local perturbations” of the coefficients of a discrete Schrödinger equation. These polynomials are called generalized Chebyshev polynomials. We answer this question for the simplest class of “local perturbations” and describe a generalized Chebyshev oscillator corresponding to generalized Chebyshev polynomials.

About the authors

V. V. Borzov

Bonch-Bruevich St. Petersburg State University of Telecommunications

Author for correspondence.
Email: borzov.vadim@yandex.ru
Russian Federation, St. Petersburg

E. V. Damaskinsky

Institute of Defence Technical Engineering

Author for correspondence.
Email: evd@pdmi.ras.ru
Russian Federation, St. Petersburg

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Pleiades Publishing, Ltd.