Algebro-geometric solutions of the Dirac hierarchy
- 作者: Yang X.1, Han J.1
-
隶属关系:
- School of Mathematics and Statistics
- 期: 卷 193, 编号 3 (2017)
- 页面: 1894-1904
- 栏目: Article
- URL: https://journals.rcsi.science/0040-5779/article/view/171583
- DOI: https://doi.org/10.1134/S0040577917120145
- ID: 171583
如何引用文章
详细
We introduce a Lenard equation and present two special solutions of it. We use one solution to derive an extended Dirac hierarchy and the other to construct the generating function. The generating function yields conserved integrals of the Dirac Hamiltonian system and defines an algebraic curve. Based on the theory of algebraic curves, we prove that the Dirac Hamiltonian system is integrable and obtain algebro-geometric solutions of the Dirac hierarchy.
作者简介
Xiao Yang
School of Mathematics and Statistics
编辑信件的主要联系方式.
Email: yx@zzu.edu.cn
中国, Zhengzhou, Henan
Jiayan Han
School of Mathematics and Statistics
Email: yx@zzu.edu.cn
中国, Zhengzhou, Henan
补充文件
