Algebro-geometric solutions of the Dirac hierarchy


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We introduce a Lenard equation and present two special solutions of it. We use one solution to derive an extended Dirac hierarchy and the other to construct the generating function. The generating function yields conserved integrals of the Dirac Hamiltonian system and defines an algebraic curve. Based on the theory of algebraic curves, we prove that the Dirac Hamiltonian system is integrable and obtain algebro-geometric solutions of the Dirac hierarchy.

作者简介

Xiao Yang

School of Mathematics and Statistics

编辑信件的主要联系方式.
Email: yx@zzu.edu.cn
中国, Zhengzhou, Henan

Jiayan Han

School of Mathematics and Statistics

Email: yx@zzu.edu.cn
中国, Zhengzhou, Henan

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017