Nonautonomous Hamiltonian quantum systems, operator equations, and representations of the Bender–Dunne Weyl-ordered basis under time-dependent canonical transformations
- 作者: Gianfreda M.1,2,3, Landolfi G.4
-
隶属关系:
- Institute of Industrial Science
- Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi,”
- IFAC-CNR, Istituto di Fisica Applicata “Nello Carrara,”
- Dipartimento di Matematica e Fisica “Ennio De Giorgi,”
- 期: 卷 193, 编号 1 (2017)
- 页面: 1444-1463
- 栏目: Article
- URL: https://journals.rcsi.science/0040-5779/article/view/171438
- DOI: https://doi.org/10.1134/S004057791710004X
- ID: 171438
如何引用文章
详细
We solve the problem of integrating operator equations for the dynamics of nonautonomous quantum systems by using time-dependent canonical transformations. The studied operator equations essentially reproduce the classical integrability conditions at the quantum level in the basic cases of one-dimensional nonautonomous dynamical systems. We seek solutions in the form of operator series in the Bender–Dunne basis of pseudodifferential operators. Together with this problem, we consider quantum canonical transformations. The minimal solution of the operator equation in the representation of the basis at a fixed time corresponds to the lowest-order contribution of the solution obtained as a result of applying a canonical linear transformation to the basis elements.
作者简介
M. Gianfreda
Institute of Industrial Science; Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi,”; IFAC-CNR, Istituto di Fisica Applicata “Nello Carrara,”
编辑信件的主要联系方式.
Email: mariagiovanna.gianfreda@gmail.com
日本, Tokyo; Rome; Sesto Fiorentino
G. Landolfi
Dipartimento di Matematica e Fisica “Ennio De Giorgi,”
Email: mariagiovanna.gianfreda@gmail.com
意大利, Lecce
补充文件
