Минеральный обмен и COVID-19: есть ли связь?

Обложка

Цитировать

Полный текст

Аннотация

В свете глобального распространения СOVID-19 становится необходимым поиск новых факторов, оказывающих влияние на клиническое течение данной инфекции. В представленном обзоре проведен анализ актуальных публикаций о связи иммунной системы с основными регуляторами минерального обмена, освещены различные аспекты изменений фосфорно-кальциевого обмена, ассоциированных с острыми респираторными заболеваниями. На основе данных о роли компонентов минерального обмена в патогенезе клинических проявлений COVID-19 уже в ближайшем будущем могут быть предложены возможные меры профилактики и подходы к комплексной терапии коронавирусной инфекции.

Об авторах

Ирина Сергеевна Maганева

ФГБУ «Национальный медицинский исследовательский центр эндокринологии» Минздрава России

Email: lizaveta.aboisheva@gmail.com
ORCID iD: 0000-0002-0067-3622

врач-эндокринолог отд-ния патологии околощитовидных желез

Россия, Москва

Анна Максимовна Горбачева

ФГБУ «Национальный медицинский исследовательский центр эндокринологии» Минздрава России

Email: lizaveta.aboisheva@gmail.com
ORCID iD: 0000-0003-2669-9457

науч. сотр. отд-ния патологии околощитовидных желез

Россия, Москва

Екатерина Евгеньевна Бибик

ФГБУ «Национальный медицинский исследовательский центр эндокринологии» Минздрава России

Email: lizaveta.aboisheva@gmail.com
ORCID iD: 0000-0001-5952-5846

науч. сотр. отд-ния патологии околощитовидных желез

Россия, Москва

Елизавета Андреевна Абойшева

ФГБУ «Национальный медицинский исследовательский центр эндокринологии» Минздрава России

Автор, ответственный за переписку.
Email: lizaveta.aboisheva@gmail.com
ORCID iD: 0000-0002-0306-6588

врач-эндокринолог отд-ния патологии околощитовидных желез

Россия, Москва

Анна Константиновна Eремкина

ФГБУ «Национальный медицинский исследовательский центр эндокринологии» Минздрава России

Email: lizaveta.aboisheva@gmail.com
ORCID iD: 0000-0001-6667-062X

канд. мед. наук, зав. отд-нием патологии околощитовидных желез

Россия, Москва

Наталья Георгиевна Мокрышева

ФГБУ «Национальный медицинский исследовательский центр эндокринологии» Минздрава России

Email: lizaveta.aboisheva@gmail.com
ORCID iD: 0000-0002-9717-9742

проф. РАН, д-р мед. наук, дир. центра

Россия, Москва

Список литературы

  1. Geara AS, Castellanos MR, Bassil C, et al. Effects of parathyroid hormone on immune function. Clin Dev Immunol. 2010;2010:418695. doi: 10.1155/2010/418695
  2. Yu M, D’Amelio P, Tyagi AM, et al. Regulatory T cells are expanded by Teriparatide treatment in humans and mediate intermittent PTH-induced bone anabolism in mice. EMBO Rep. 2018;19(1):156-71. doi: 10.15252/embr.201744421
  3. Martens P-J, Gysemans C, Verstuyf A, Mathieu AC. Vitamin D’s Effect on Immune Function. Nutrients. 2020;12(5):1248. doi: 10.3390/nu12051248
  4. Hsu Y-H, Chen HI. Acute respiratory distress syndrome associated with hypercalcemia without parathyroid disorders. Chin J Physiol. 2008;51(6):414-8.
  5. Grant WB, Lahore H, McDonnell SL, et al. Evidence that Vitamin D Supplementation Could Reduce Risk of Influenza and COVID-19 Infections and Deaths. Nutrients. 2020;12(4):988. doi: 10.3390/nu12040988
  6. Chen P, Trummel C, Horton J, et al. Production of osteoclast-activating factor by normal human peripheral blood rosetting and nonrosetting lymphocytes. Eur J Immunol. 1976;6(10):732-6. doi: 10.1002/eji.1830061014
  7. Milhaud G, Labat ML. Thymus and osteopetrosis. Clin Orthop Relat Res. 1978;135:260-71.
  8. Yoneda T, Mundy GR. Monocytes regulate osteoclast-activating factor production by releasing prostaglandins. J Exp Med. 1979;150(2):338-50. doi: 10.1084/jem.150.2.338
  9. Terauchi M, Li J-Y, Bedi B, et al. T lymphocytes amplify the anabolic activity of parathyroid hormone through Wnt10b signaling. Cell Metab. 2009;10(3):229-40. doi: 10.1016/j.cmet.2009.07.010
  10. Ohkura N, Kitagawa Y, Sakaguchi S. Development and maintenance of regulatory T cells. Immunity. 2013;38(3):414-23. doi: 10.1016/j.immuni.2013.03.002
  11. McCarthy TL, Centrella M, Canalis E. Parathyroid hormone enhances the transcript and polypeptide levels of insulin-like growth factor I in osteoblast-enriched cultures from fetal rat bone. Endocrinology. 1989;124(3):1247-53. doi: 10.1210/endo-124-3-1247
  12. Alexiewicz JM, Klinger M, Pitts TO, et al. Parathyroid hormone inhibits B cell proliferation: implications in chronic renal failure. J Am Soc Nephrol. 1990;1(3):236-44. doi: 10.1681/ASN.V13236
  13. Jiang Y, Yoshida A, Ishioka C, et al. Parathyroid hormone inhibits immunoglobulin production without affecting cell growth in human B cells. Clin Immunol Immunopathol. 1992;65(3):286-93. doi: 10.1016/0090-1229(92)90159-l
  14. Emam AA, Mousa SG, Ahmed KY, Al-Azab AA. Inflammatory biomarkers in patients with asymptomatic primary hyperparathyroidism. Med Princ Pract. 2012;21(3):249-53. doi: 10.1159/000334588
  15. Chertok-Shacham E, Ishay A, Lavi I, Luboshitzky R. Biomarkers of hypercoagulability and inflammation in primary hyperparathyroidism. Med Sci Monit Int Med J Exp Clin Res. 2008;14(12):CR628-32.
  16. Veldman CM, Cantorna MT, DeLuca HF. Expression of 1,25-dihydroxyvitamin D(3) receptor in the immune system. Arch Biochem Biophys. 2000;374(2):334-8. doi: 10.1006/abbi.1999.1605
  17. Booth DR, Ding N, Parnell GP, et al. Cistromic and genetic evidence that the vitamin D receptor mediates susceptibility to latitude-dependent autoimmune diseases. Genes Immun. 2016;17(4):213-9. doi: 10.1038/gene.2016.12
  18. Bilezikian JP, Bikle D, Hewison M, et al. MECHANISMS IN ENDOCRINOLOGY: Vitamin D and COVID-19. Eur J Endocrinol. 2020;183(5):R133-47. doi: 10.1530/eje-20-0665
  19. Wei R, Christakos S. Mechanisms Underlying the Regulation of Innate and Adaptive Immunity by Vitamin D. Nutrients. 2015;7(10):8251-60. DOI:10.3390%2Fnu7105392
  20. Christakos S, Hewison M, Gardner DG, et al. Vitamin D: beyond bone. Ann N Y Acad Sci. 2013;1287(1):45-58. DOI:10.1111%2Fnyas.12129
  21. Liu PT, Stenger S, Tang DH, Modlin RL. Cutting edge: vitamin D-mediated human antimicrobial activity against Mycobacterium tuberculosis is dependent on the induction of cathelicidin. J Immunol. 2007;179(4):2060-3. doi: 10.4049/jimmunol.179.4.2060
  22. White JH. Vitamin D as an inducer of cathelicidin antimicrobial peptide expression: past, present and future. J Steroid Biochem Mol Biol. 2010;121(1-2):234-8. doi: 10.1016/j.jsbmb.2010.03.034
  23. Cantorna MT, Snyder L, Lin Y-D, Yang L. Vitamin D and 1,25(OH)2D regulation of T cells. Nutrients. 2015;7(4):3011-21. doi: 10.3390/nu7043011
  24. Amano Y, Komiyama K, Makishima M. Vitamin D and periodontal disease. J Oral Sci. 2009;51(1):11-20. doi: 10.2334/josnusd.51.11
  25. Chen S, Sims GP, Chen XX, et al. Modulatory effects of 1,25-dihydroxyvitamin D3 on human B cell differentiation. J Immunol. 2007;179(3):1634-47. doi: 10.4049/jimmunol.179.3.1634
  26. Rossaint J, Oehmichen J, Van Aken H, et al. FGF23 signaling impairs neutrophil recruitment and host defense during CKD. J Clin Invest. 2016;126(3):962-74. doi: 10.1172/jci83470
  27. Masuda Y, Ohta H, Morita Y, et al. Expression of Fgf23 in activated dendritic cells and macrophages in response to immunological stimuli in mice. Biol Pharm Bull. 2015;38(5):687-93. doi: 10.1248/bpb.b14-00276
  28. D’Elia JA, Weinrauch LA. Calcium Ion Channels: Roles in Infection and Sepsis Mechanisms of Calcium Channel Blocker Benefits in Immunocompromised Patients at Risk for Infection. Int J Mol Sci. 2018;19(9):2465. doi: 10.3390/ijms19092465
  29. Zheng L, Hunter K, Gaughan J, Poddar S. Preadmission Use of Calcium Channel Blockers and Outcomes After Hospitalization With Pneumonia: A Retrospective Propensity-Matched Cohort Study. Am J Ther. 2017;24(1):e30-8. doi: 10.1097/mjt.0000000000000312
  30. Lee C, Xu D-Z, Feketeova E, et al. Calcium entry inhibition during resuscitation from shock attenuates inflammatory lung injury. Shock. 2008;30(1):29-35. doi: 10.1097/shk.0b013e318145a589
  31. Nieto-Torres JL, Verdiá-Báguena C, Jimenez-Guardeño JM, et al. Severe acute respiratory syndrome coronavirus E protein transports calcium ions and activates the NLRP3 inflammasome. Virology. 2015;485:330-9. doi: 10.1016/j.virol.2015.08.010
  32. Millet JK, Whittaker GR. Physiological and molecular triggers for SARS-CoV membrane fusion and entry into host cells. Virology. 2018;517:3-8. doi: 10.1016/j.virol.2017.12.015
  33. Straus MR, et al. Ca2+ ions promote fusion of Middle East respiratory syndrome coronavirus with host cells and increase infectivity. J Virol. 2020;94:e00426-20. doi: 10.1128/JVI.00426-20
  34. Hoffmann HH, Schneider WM, Blomen VA, et al. Diverse Viruses Require the Calcium Transporter SPCA1 for Maturation and Spread. Cell Host Microbe. 2017;22(4):460-70.e5. doi: 10.1016/j.chom.2017.09.002
  35. Pizzorno A, Terrier O, Nicolas de Lamballerie C, et al. Repurposing of Drugs as Novel Influenza Inhibitors From Clinical Gene Expression Infection Signatures. Front Immunol. 2019;10:60. doi: 10.3389/fimmu.2019.00060
  36. Fujioka Y, Nishide S, Ose T, et al. A Sialylated Voltage-Dependent Ca(2+) Channel Binds Hemagglutinin and Mediates Influenza A Virus Entry into Mammalian Cells. Cell Host Microbe. 2018;23(6):809-18.e5. doi: 10.1016/j.chom.2018.04.015
  37. Di Filippo L, Formenti AM, Rovere-Querini P, et al. Hypocalcemia is highly prevalent and predicts hospitalization in patients with COVID-19. Endocrine. 2020;68(3):475-8. doi: 10.1007/s12020-020-02383-5
  38. Liu J, Han P, Wu J, et al. Prevalence and predictive value of hypocalcemia in severe COVID-19 patients, J Infect and Public Health. 2020;13(9):1224-8. doi: 10.1016/j.jiph.2020.05.029
  39. Lippi G, South AM, Henry BM. Electrolyte imbalances in patients with severe coronavirus disease 2019 (COVID-19). Ann Clin Biochem. 2020;57(3):262-5. doi: 10.1177/0004563220922255
  40. Torres B, Alcubilla P, González-Cordón A, et al. Impact of low serum calcium at hospital admission on SARS-CoV-2 infection outcome. Int J Infect Dis. 2020;104:164-8. doi: 10.1016/j.ijid.2020.11.207
  41. Wu Y, Hou B, Liu J, et al. Risk Factors Associated With Long-Term Hospitalization in Patients With COVID-19: A Single-Centered, Retrospective Study. Front Med (Lausanne). 2020;7:315. doi: 10.3389/fmed.2020.00315
  42. Sun JK, Zhang WH, Zou L, et al. Serum calcium as a biomarker of clinical severity and prognosis in patients with coronavirus disease 2019. Aging (Albany NY). 2020;12(12):11287-95. doi: 10.18632/aging.103526
  43. Маганева И.С., Еремкина А.К., Бибик Е.Е., и др. Статус минерального обмена у пациентов с COVID-19 при поступлении в стационар. Профилактическая медицина. 2020;23(8):64-73 [Maganeva IS, Eremkina AK, Bibik EE, et al. Status of mineral metabolism in patients with COVID-19 on admission to the hospital. Profilakticheskaia meditsina. 2020;23(8):64-73 (in Russian)]. doi: 10.17116/profmed20202308164
  44. Nijjer S, Ghosh AK, Dubrey SW. Hypocalcaemia, long QT interval and atrial arrhythmias. BMJ Case Rep. 2010;2010:bcr0820092216. doi: 10.1136/bcr.08.2009.2216
  45. Zivin JR, Gooley T, Zager RA, Ryan MJ. Hypocalcemia: a pervasive metabolic abnormality in the critically ill. Am J kidney Dis. 2001;37(4):689-98. doi: 10.1016/s0272-6386(01)80116-5
  46. Di Filippo L, Formenti AM, Doga M, et al. Hypocalcemia is a distinctive biochemical feature of hospitalized COVID-19 patients. Endocrine. 2021;71:9-13. doi: 10.1007/s12020-020-02541-9
  47. Cappellini F, Brivio R, Casati M, et al. Low levels of total and ionized calcium in blood of COVID-19 patients. Clinical Chemistry and Laboratory Medicine (CCLM). 2020;58(9):171-3. doi: 10.1515/cclm-2020-0611
  48. Tao RJ, Luo X-L, Xu W, et al. Viral infection in community acquired pneumonia patients with fever: a prospective observational study. J Thorac Dis. 2018;10(7):4387-95. doi: 10.21037/jtd.2018.06.33
  49. Zhang J, Zhao Y, Chen Y. Laboratory findings in patients with avian-origin influenza A (H7N9) virus infections. J Med Virol. 2014;86(5):895-8. doi: 10.1002/jmv.23780
  50. Song S-Z, Liu H-Y, Shen H, et al. Comparison of serum biochemical features between SARS and other viral pneumonias. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue. 2004;16(11):664-6.
  51. Singh VP, Khatua B, El-Kurdi B. Hypocalcemia and hypoalbuminemia during COVID-19 infection: Opportunities for therapeutic intervention. J Infect Public Health. 2020;13(12):1887. doi: 10.1016/j.jiph.2020.09.019
  52. Singh VP, Khatua B, El-Kurdi B, et al. Mechanistic basis and therapeutic relevance of hypocalcemia during severe COVID-19 infection. Endocrine. 2020;70:461-2. doi: 10.1007/s12020-020-02530-y
  53. di Filippo L, Formenti AM, Giustina A. Hypocalcemia: the quest for the cause of a major biochemical feature of COVID-19. Endocrine. 2020;70(3):463-4. doi: 10.1007/s12020-020-02525-9
  54. El-Kurdi B, Khatua B, Rood C, et al. Mortality From Coronavirus Disease 2019 Increases With Unsaturated Fat and May Be Reduced by Early Calcium and Albumin Supplementation. Gastroenterology. 2020;159(3):1015-8.e4. doi: 10.1053/j.gastro.2020.05.057
  55. Thomas T, Stefanoni D, Reisz JA, et al. COVID-19 infection alters kynurenine and fatty acid metabolism, correlating with IL-6 levels and renal status. JCI Insight. 2020;5(14):e140327. doi: 10.1172/jci.insight.140327
  56. Khatua B, Yaron JR, El-Kurdi B, et al. Ringer's Lactate Prevents Early Organ Failure by Providing Extracellular Calcium. J Clin Med. 2020;9(1):263. doi: 10.3390/jcm9010263
  57. Navina S, Acharya C, DeLany JP, et al. Lipotoxicity causes multisystem organ failure and exacerbates acute pancreatitis in obesity. Sci Transl Med. 2011;3(107):107ra110. doi: 10.1126/scitranslmed.3002573
  58. Мокрышева Н.Г. Околощитовидные железы. Первичный гиперпаратиреоз. М.: Медицинское информационное агентство, 2019 [Mokrysheva NG. Okoloshchitovidnye zhelezy. Pervichnyi giperparatireoz. Moscow: Meditsinskoe informatsionnoe agentstvo, 2019 (in Russian)].
  59. Hope-Simpson RE. The role of season in the epidemiology of influenza. J Hyg (Lond). 1981;86(1):35-47. doi: 10.1017/s0022172400068728
  60. Cannell JJ, Zasloff M, Garland CF, et al. On the epidemiology of influenza. Virol J. 2008;5:29. doi: 10.1186/1743-422X-5-29
  61. Cannell JJ, Vieth R, Umhau JC, et al. Epidemic influenza and vitamin D. Epidemiol Infect; 2006;134(6):1129-40. doi: 10.1017/s0950268806007175
  62. Grant WB, Giovannucci E. The possible roles of solar ultraviolet-B radiation and vitamin D in reducing case-fatality rates from the 1918–1919 influenza pandemic in the United States. Dermatoendocrinol. 2009;1(4):215-9. doi: 10.4161/derm.1.4.9063
  63. Berry DJ, Hesketh K, Power C, Hyppönen E. Vitamin D status has a linear association with seasonal infections and lung function in British adults. Br J Nutr. 2011;106(9):1433-40. doi: 10.1017/s0007114511001991
  64. Dancer RC, Parekh D, Lax S, et al. Vitamin D deficiency contributes directly to the acute respiratory distress syndrome (ARDS). Thorax. 2015;70(7):617-24. doi: 10.1136/thoraxjnl-2014-206680
  65. Esposito S, Lelii M. Vitamin D and respiratory tract infections in childhood. BMC Infect Dis. 2015;15:487. doi: 10.1186/s12879-015-1196-1
  66. Loeb M, Dang AD, Thiem VD, et al. Effect of Vitamin D supplementation to reduce respiratory infections in children and adolescents in Vietnam: A randomized controlled trial. Influenza Other Respi Viruses. 2019;13(2):176-83. doi: 10.1111/irv.12615
  67. Kühn J, Trotz P, Stangl GI. Prevalence of vitamin D insufficiency and evidence for disease prevention in the older population. Z Gerontol Geriatr. 2018;51(5):567-72. doi: 10.1007/s00391-018-1390-z
  68. Gois PHF, Ferreira D, Olenski S, Seguro AC. Vitamin D and Infectious Diseases: Simple Bystander or Contributing Factor? Nutrients. 2017;9(7):651. doi: 10.3390/nu9070651
  69. Zdrenghea MT, Makrinioti H, Bagacean C, et al. Vitamin D modulation of innate immune responses to respiratory viral infections. Rev Med Virol. 2017;27(1). doi: 10.1002/rmv.1909
  70. Urashima M, Mezawa H, Noya M, Camargo CA. Effects of vitamin D supplements on influenza A illness during the 2009 H1N1 pandemic: A randomized controlled trial. Food Funct. 2014;5(9):2365-70. doi: 10.1039/c4fo00371c
  71. Urashima M, Segawa T, Okazaki M, et al. Randomized trial of vitamin D supplementation to prevent seasonal influenza A in schoolchildren. Am J Clin Nutr. 2010;91(5):1255-60. doi: 10.3945/ajcn.2009.29094
  72. Zhou J, Du J, Huang L, et al. Preventive effects of Vitamin D on seasonal influenza a in infants: A multicenter, randomized, open, controlled clinical trial. Pediatr Infect Dis J. 2018;37(8):749-54. doi: 10.1097/inf.0000000000001890
  73. Arihiro S, Nakashima A, Matsuoka M, et al. Randomized Trial of Vitamin D Supplementation to Prevent Seasonal Influenza and Upper Respiratory Infection in Patients With Inflammatory Bowel Disease. Inflamm Bowel Dis. 2019;4;25(6):1088-95. doi: 10.1093/ibd/izy346
  74. Martineau AR, Jolliffe DA, Hooper RL, et al. Vitamin D supplementation to prevent acute respiratory tract infections: Systematic review and meta-analysis of individual participant data. BMJ. 2017;356;i6583. doi: 10.1136/bmj.i6583
  75. Pereira M, Dantas Damascena A, Galvão Azevedo LM, et al. Vitamin D deficiency aggravates COVID-19: systematic review and meta-analysis. Crit Rev Food Sci Nutr. 2020:1-9. doi: 10.1080/10408398.2020.1841090
  76. Hastie CE, Mackay DF, Ho F, et al. Vitamin D concentrations and COVID-19 infection in UK Biobank. Diabetes Metab Syndr. 2020;14(4):561-5. doi: 10.1016/j.dsx.2020.04.050
  77. Jakovac H. COVID-19 and vitamin D-Is there a link and an opportunity for intervention? Am J Physiol Endocrinol Metab. 2020;318(5):E589. doi: 10.1152/ajpendo.00138.2020
  78. McCartney DM, Byrne DG. Optimisation of Vitamin D Status for Enhanced Immuno-protection Against COVID-19. Ir Med J. 2020;113(4):58.
  79. Panarese A, Shahini E. Letter: COVID-19, and vitamin D. Aliment Pharmacol Ther. 2020;51(10):993-5. doi: 10.1111/apt.15752
  80. Rhodes JM, Subramanian S, Laird E, Kenny RA. Letter: low population mortality from COVID-19 in countries south of latitude 35° North supports vitamin D as a factor determining severity. Authors' reply. Aliment Pharmacol Ther. 2020;52(2):412-3. doi: 10.1111/apt.15823
  81. Marik PE, Kory P, Varon J. Does vitamin D status impact mortality from SARS-CoV-2 infection?. Med Drug Discov. 2020;6:100041. doi: 10.1016/j.medidd.2020.100041
  82. Garg M, Al-Ani A, Mitchell H, Hendy P, Christensen B. Editorial: low population mortality from COVID-19 in countries south of latitude 35 degrees North-supports vitamin D as a factor determining severity. Authors' reply. Aliment Pharmacol Ther. 2020;51(12):1438-9. doi: 10.1111/apt.15796

© ООО "Консилиум Медикум", 2021

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 
 


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах