Прогностическое значение мутации ASXL1 при первичном миелофиброзе. Обзор литературы и описание клинического случая

Обложка

Цитировать

Полный текст

Аннотация

Первичный миелофиброз (ПМФ) представляет собой миелопролиферативное новообразование, которое возникает de novo, характеризуется клональной пролиферацией стволовых клеток, аномальной экспрессией цитокинов, фиброзом костного мозга, гепатоспленомегалией – как следствие экстрамедуллярного гемопоэза, симптомами опухолевой интоксикации, кахексией, лейкоэритробластозом в периферической крови, лейкемической прогрессией и невысокой выживаемостью. ПМФ является хроническим неизлечимым заболеванием. Цели терапии: предупреждение прогрессии, увеличение общей выживаемости, улучшение качества жизни. Выбор лечебной тактики ограничен. Трансплантация аллогенных гемопоэтических стволовых клеток (алло-ТГСК) – единственный метод, дающий шанс на излечение. В настоящее время активно изучается роль мутаций ряда генов в раннем выявлении кандидатов для алло-ТГСК. В статье представлено описание клинического случая выявления мутации гена ASXL1 у больного префиброзным ПМФ. Диагноз установлен на основании критериев Всемирной организации здравоохранения 2016 г. При обследовании выявлена мутация ASXL1. Проводится терапия интерфероном альфа, в результате которой достигнута клинико-гематологическая ремиссия. Несмотря на выявленную мутацию, пациент не является кандидатом для алло-ТГСК. Учитывая неблагоприятное прогностическое значение мутации ASXL1, пациент подлежит активному динамическому наблюдению и агрессивной терапевтической тактике при появлении признаков прогрессирования заболевания.

Об авторах

Анаит Левоновна Меликян

ФГБУ «Национальный медицинский исследовательский центр гематологии» Минздрава России

Автор, ответственный за переписку.
Email: anoblood@mail.ru
ORCID iD: 0000-0002-2119-3775

д.м.н., зав. отд-нием стандартизации методов лечения

Россия, Москва

Николаевна Ирина Суборцева

ФГБУ «Национальный медицинский исследовательский центр гематологии» Минздрава России

Email: anoblood@mail.ru
ORCID iD: 0000-0001-9045-8653

к.м.н., c.н.с., врач-онколог отд-ния стандартизации методов лечения

Россия, Москва

Елена Александровна Гилязитдинова

ФГБУ «Национальный медицинский исследовательский центр гематологии» Минздрава России

Email: anoblood@mail.ru
ORCID iD: 0000-0002-3883-185X

врач-гематолог отд-ния стандартизации методов лечения

Россия, Москва

Тамара Ивановна Колошейнова

ФГБУ «Национальный медицинский исследовательский центр гематологии» Минздрава России

Email: anoblood@mail.ru
ORCID iD: 0000-0003-4580-040X

к.м.н., зам. зав. отд-нием стандартизации методов лечения

Россия, Москва

Елена Константиновна Егорова

ФГБУ «Национальный медицинский исследовательский центр гематологии» Минздрава России

Email: anoblood@mail.ru
ORCID iD: 0000-0002-6770-1544

к.м.н., врач-гематолог отд-ния стандартизации методов лечения

Россия, Москва

Елена Игоревна Пустовая

ФГБУ «Национальный медицинский исследовательский центр гематологии» Минздрава России

Email: anoblood@mail.ru
ORCID iD: 0000-0002-1099-8092

к.м.н., врач-гематолог отд-ния стандартизации методов лечения

Россия, Москва

Андрей Борисович Судариков

ФГБУ «Национальный медицинский исследовательский центр гематологии» Минздрава России

Email: anoblood@mail.ru
ORCID iD: 0000-0001-9463-9187

д.б.н., проф., рук. лаб. молекулярной гематологии

Россия, Москва

Адхамжон Одиллович Абдуллаев

ФГБУ «Национальный медицинский исследовательский центр гематологии» Минздрава России

Email: anoblood@mail.ru
ORCID iD: 0000-0003-2530-808X

к.м.н., н.с. лаб. молекулярной гематологии

Россия, Москва

Лана Анзоровна Горгидзе

ФГБУ «Национальный медицинский исследовательский центр гематологии» Минздрава России

Email: anoblood@mail.ru
ORCID iD: 0000-0001-5235-2356

к.б.н., с.н.с. отд-ния реанимации и интенсивной терапии с экспресс-лабораторией

Россия, Москва

Дмитрий Ильич Чеботарев

ФГБУ «Национальный медицинский исследовательский центр гематологии» Минздрава России

Email: anoblood@mail.ru
ORCID iD: 0000-0003-2146-0818

врач-патологоанатом патологоанатомического отд-ния

Россия, Москва

Список литературы

  1. Меликян А.Л., Туркина А.Г., Ковригина А.М. и др. Клинические рекомендации по диагностике и терапии Ph-негативных миелопролиферативных заболеваний (истинная полицитемия, эссенциальная тромбоцитемия, первичный миелофиброз) (редакция 2016 г.). Гематология и трансфузиология. 2017;62(1):25-60 [Melikyan AL, Turkina AG, Kovrigina AM, et al. Clinical recommendations for the diagnosis and therapy of Ph-negative myeloproliferative neoplasms (polycythemia vera, essential thrombocythemia, primary myelofibrosis) (edition 2016). Hematology and transfusiology. 2017;62(1):25-60 (In Russ.)]. doi: 10.25837/HAT.2019.51.88.001
  2. Меликян А.Л., Суборцева И.Н., Галстян Г.М. Протокол дифференцированного посиндромного лечения больных первичным миелофиброзом. В кн.: Абрамова А.В., Абдуллаев А.О., Азимова М.Х. и др. Алгоритмы диагностики и протоколы лечения заболеваний системы крови. В 2 т. М., 2018; с. 777-802 [Melikyan AL, Subortseva IN, Galstyan GM. Protocol of differentiated syndromic treatment of patients with primary myelofibrosis. In: Abramova AV, Abdullaev AO, Azimova MKh, et al. Diagnostic algorithms and protocols for the treatment of the blood system diseases. Moscow, 2018; p. 777-802 (In Russ.)].
  3. Nangalia J, Massie C, Baxter E, et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med. 2013;369(25):2391-405. doi: 10.1056/NEJMoa1312542
  4. Klampfl T, Gisslinger H, Harutyunyan A, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med. 2013;369(25):2379-90. doi: 10.1056/NEJMoa1311347
  5. Lundberg P, Karow A, Nienhold R, et al. Clonal evolution and clinical correlates of somatic mutations in myeloproliferative neoplasms. Blood. 2014;123(14):2220-8. doi: 10.1182/blood-2013-11-537167
  6. Guglielmelli P, Lasho T, Rotunno G, et al. The number of prognostically detrimental mutations and prognosis in primary myelofibrosis: an international study of 797 patients. Leukemia. 2014;28(9):1804-10. doi: 10.1038/leu.2014.76
  7. Vannucchi A, Lasho T, Guglielmelli P, et al. Mutations and prognosis in primary myelofibrosis. Leukemia. 2013;27(9):1861-9. doi: 10.1038/leu.2013.119
  8. Меликян А.Л., Суборцева И.Н. Молекулярный патогенез миелопролиферативных заболеваний. Материалы 19-го конгресса европейской гематологической ассоциации (2014 г. Милан). Клиническая онкогематология. Фундаментальные исследования и клиническая практика. 2014;7(4):598-607 [Melikyan AL, Subortseva IN. Molecular pathogenesis of myeloproliferative diseases. Materials of the 19th congress of the European Hematology Association (2014, Milano). Klinicheskaya onkogematologiya. Fundamental’nye issledovaniya i klinicheskaya praktika. 2014;7(4):598-607 (In Russ.)].
  9. Меликян А.Л., Суборцева И.Н. Биология миелопролиферативных новообразований. Клиническая онкогематология. Фундаментальные исследования и клиническая практика. 2016;9(3):314-25 [Melikyan AL, Subortseva IN. Biology of myeloproliferative disease. Clinical oncohematology. Basic research and clinical practice. 2016;9(3):314-25 (In Russ.)]. doi: 10.21320/2500-2139-2016-9-3-314-325
  10. Abdel-Wahab O, Adli M, LaFave L, et al. ASXLl mutations promote myeloid transformation through loss of PRC2-mediated gene repression. Cancer Cell. 2012;22(2):180-93. doi: 10.1016/j.ccr.2012.06.032
  11. Inoue D, Fujino T, Sheridan P, et al. A novel ASXLl-OGT axis plays roles in H3K4 methylation and tumor suppression in myeloid malignancies. Leukemia. 2018;32(6):1327-37. doi: 10.1038/s41375-018-0083-3
  12. Yang H, Kurtenbach S, Guo Y, et al. Gain of function of ASXLl truncating protein in the pathogenesis of myeloid malignancies. Blood. 2018;131(3):328-41. doi: 10.1182/blood-2017-06-789669
  13. Tefferi A, Nicolosi M, Mudireddy M, et al. Driver mutations and prognosis in primary myelofibrosis: Mayo-Careggi MPN alliance study of 1,095 patients. Am J Hematol. 2018;93(3):348-55. doi: 10.1002/ajh.24978
  14. Tefferi A, Lasho T, Finke C, et al. Prognostic significance of ASXLl mutation types and allele burden in myelofibrosis. Leukemia. 2018;32(3):837-9. doi: 10.1038/leu.2017.318
  15. Tefferi A, Guglielmelli P, Lasho TL, et al. CALR and ASXLI mutations-based molecular prognostication in primary myelofibrosis: an international study of 570 patients. Leukemia. 2014;28(7):1494-500. doi: 10.1038/leu.2014.57
  16. Spiegel J, McNamara C, Kennedy J, et al. lmpact of genomic alterations on outcomes in myelofibrosis patients undergoing JAKl/2 inhibitor therapy. Blood Adv. 2017;1(20):1729-38. doi: 10.1182/bloodadvances.2017009530
  17. Newberry K, Patel K, Masarova L, et al. Clonal evolution and outcomes in myelofibrosis after ruxolitinib discontinuation. Blood. 2017;130(9):1125-31. doi: 10.1182/blood-2017-05-783225
  18. Kröger N, Panagiota V, Badbaran A, et al. Impact of molecular genetics on outcome in myelofibrosis patients after allogeneic stem cell transplantation. Biol Blood Marrow Transplant. 2017;23(7):1095-01. doi: 10.1016/j.bbmt.2017.03.034
  19. Arber D, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391-405. doi: 10.1182/blood-2016-03-643544
  20. Guglielmelli P, Pacilli A, Rotunno G, et al; AGIMM Group. Presentation and outcome of patients with 2016 WHO diagnosis of prefibrotic and overt primary myelofibrosis. Blood. 2017;129(24):3227-36. doi: 10.1182/blood-2017-01-761999
  21. Cervantes F, Dupriez B, Pereira A, et al. New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment. Blood. 2009;113(13):2895-901. doi: 10.1182/blood-2008-07-170449
  22. Passamonti F, Cervantes F, Vannucchi AM, et al. A dynamic prognostic model to predict survival in primary myelofibrosis: a study by the IWGMRT (International Working Group for Myeloproliferative Neoplasms Research and Treatment). Blood. 2010;115(9):1703-8. doi: 10.1182/blood-2009-09-245837
  23. Passamonti F, Giorgino T, Mora B, et al. A clinical-molecular prognostic model to predict survival in patients with post polycythemia vera and post essential thrombocythemia myelofibrosis. Leukemia. 2017;31(12):2726-31. doi: 10.1038/leu.2017.169
  24. Guglielmelli P, Lasho T, Rotunno G, et al. MIPSS70: mutationenhanced International Prognostic Score System for transplantationage patients with primaty myelofibrosis. J Clin Oneal. 2018;36(4):310-8. doi: 10.1200/JCO.2017.76.4886
  25. Tefferi A, Guglielmelli P, Nicolosi M, et al. GIPSS: genetically inspired prognostic scoring system for p1imary myelofibrosis. Leukemia. 2018;32(7):1631-42. doi: 10.1038/s41375-018-0107-z
  26. Hobbs GS, Rozelle S, Mullally A. The development and use of Janus Kinase 2 inhibitors for the treatment of myeloproliferative neoplasms. Hematol Oneal Clin North Am. 2017;31(4):613-26. doi: 10.1016/j.hoc.2017.04.002
  27. Verstovsek S, Mesa R, Gotlib J, et al. A double-blind, placebocontrolled trial of ruxolitinib for myelofibrosis. N Engl J Med. 2012;366(9):799-807. doi: 10.1056/NEJMoa1110557
  28. Harrison C, Kiladjian J, Al-Ali HK, et al. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N Engl J Med. 2012;366(9):787-98. doi: 10.1056/NEJMoa1110556
  29. Vannucchi A, Kiladjian J, Griesshammer M, et al. Ruxolitinib versus standard therapy for the treatment of polycythemia vera. N Engl J Med. 2015;372(5):426-35. doi: 10.1056/NEJMoa1409002
  30. Deininger M, Radich J, Burn T, et al. The effect of long-term ruxolitinib treatment on JAK2p.V617F allele burden in patients with myelofibrosis. Blood. 2015;126(13):1551-4. doi: 10.1182/blood-2015-03-635235
  31. Guglielmelli P, Rotunno G, Bogani C, et al; COMFORT-II Investigators. Ruxolitinib is an effective treatment for CALR-positive patients with myelofibrosis. Br J Haematol. 2016;173(6):938-40. doi: 10.1111/bjh.13644
  32. Vannucchi A, Verstovsek S, Guglielmelli P, et al. Ruxolitinib reduces JAK2 p.V617F allele burden in patients with polycythernia vera enrolled in the RESPONSE study. Ann Hematol. 2017;96(7):1113-20. doi: 10.1007/s00277-017-2994-x
  33. Patel K, Newberry K, Luthra R, et al. Correlation of mutation profile and response in patients with myelofibrosis treated with ruxolitinib. Blood. 2015;126(6):790-7. doi: 10.1182/blood-2015-03-633404
  34. Harrison C, Vannucchi A, Kiladjian J, et al. Long-term findings from COMFORT-II, a phase 3 study of ruxolitinib vs best available therapy for myelofibrosis [published correction appears in Leukemia. 2017;31:775]. Leukemia. 2016;30(8):1701-7. doi: 10.1038/leu.2016.148
  35. Guglielmelli P, Biamonte F, Rotunno G, et al; COMFORT-II Investigators; Associazione Italiana per la Ricerca sul Cancro Gruppo Italiano Malattie Mieloproliferative (AGIMM) Investigators. Impact of mutational status on outcomes in myelofibrosis patients treated with ruxolitinib in the COMFORT-IT study. Blood. 2014;123(14):2157-60. doi: 10.1182/blood-2013-11-536557
  36. Kiladjian J, Cassinat B, Chevret S, et al. Pegylated interferon-alfa-2a induces complete hematologic and molecular responses with low toxicity in polycythemia vera. Blood. 2008;112(8):3065-72. doi: 10.1182/blood-2008-03-143537
  37. Quintás-Cardama A, Kantarjian H, Manshouri T, et al. Pegylated interferon alfa-2a yields high rates of hematologic and molecular response in patients with advanced essential thrombocythemia and polycythemia vera. J Clin Oneal. 2009;27(32):5418-24. doi: 10.1200/JCO.2009.23.6075
  38. Меликян А.Л., Суборцева И.Н., Гилязитдинова Е.А. и др. Цепэгинтерферон альфа-2 в лечении хронических миелопролиферативных заболеваний. Терапевтический архив. 2018;90(7):23-9 [Melikyan AL, Subortseva IN, Gilyazitdinova EA, et al. Cepeginterferon alfa-2b in the treatment of chronic myeloproliferative diseases. Therapeutic Archive. 2018;90(7):23-9 (In Russ.)]. doi: 10.26442/terarkh201890723-29
  39. Masarova L, Patel K, Newberry K, et al. Pegylated interferon alfa-2a in patients with essential thrombocythaemia or polycythaemia vera: a posthoc, median 83 month follow-up of an open-label, phase 2 trial. Lancet Haematol. 2017;4(4):165-75. doi: 10.1016/S2352-3026(17)30030-3
  40. Mullally A, Bruedigam C, Poveromo L, et al. Depletion of JAK2V617F myeloproliferative neoplasm-propagating stem cells by interferon-a in a murine model of polycythemia vera. Blood. 2013;121(18):3692-702. doi: 10.1182/blood-2012-05-432989
  41. Silver R, Barel A, Lascu E, et al. The effect of initial molecular profile on response to recombinant interferon-a (rlFNa) treatment in early myelofibrosis. Cancer. 2017;123(14):2680-7. doi: 10.1002/cncr.30679
  42. Ianotto J, Chauveau A, Boyer-Perrard F, et al. Benefits and pitfalls of pegylated interferon-2a therapy in patients with myeloproliferative neoplasm-associated myelofibrosis: a French Intergroup of Myeloproliferative neoplasms (FIM) study. Haematologica. 2018;103(3):438-46. doi: 10.3324/haematol.2017.181297

© ООО "Консилиум Медикум", 2020

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 
 


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах