Влияние N-ацетилцистеина на мукозальный иммунитет дыхательных путей


Цитировать

Полный текст

Аннотация

Исход заболеваний, сопровождающихся или вызванных мукостазом, зависит как от восстановления дренажной функции дыхательных путей, так и от эффективности противоинфекционных иммунных механизмов. N-ацетилцистеин (ацетилцистеин) широко используется в клинической практике как муколитическое и антиоксидантное средство. В этой связи проанализированы данные научной литературы о прямом и опосредованном влиянии ацетилцистеина на мукозальный иммунитет респираторного тракта. Этот препарат обладает плейотропным и иммунотропными свойствами, большая часть которых способствует регрессии клинических проявлений острых и хронических воспалительных заболеваний дыхательных путей. Среди биологических и фармакологических эффектов ацетилцистеина следует выделить улучшение реологических свойств слизи, снижение избыточной продукции муцинов, восстановление мукоцилиарного клиренса и продукции sIgA, подавление избыточной продукции IgE и IgG4, разрушение биопленок, делающее патогенные бактерии и грибы уязвимыми для антимикробных факторов хозяина, подавление адгезии болезнетворных бактерий к эпителиоцитам, антиоксидантную активность, регуляцию выработки провоспалительных и профибротических цитокинов. Не обнаружено веских подтверждений наличия у ацетилцистеина супрессивного потенциала в отношении мукозального иммунитета. Для окончательных суждений о влиянии ацетилцистеина на местный иммунный ответ требуются дополнительные, в первую очередь клинические, исследования.

Об авторах

Олег Витальевич Калюжин

ФГАОУ ВО «Первый МГМУ им. И.М. Сеченова» Минздрава России (Сеченовский университет)

Email: kalyuzhin@list.ru
д.м.н., проф., проф. каф. клинической иммунологии и аллергологии; ORCID ID: https://orcid.org/0000-0003-3628-2436 Москва, Россия

Список литературы

  1. Анаев Э.Х. Муколитическая терапия: рациональный выбор. Эффективная фармакотерапия. 2010; (27): 25-28.
  2. Геппе Н.А., Снегоцкая М.Н., Никитенко А.А. Ацетилцистеин для лечения кашля у детей // Педиатрия. Прил. к журналу Consilium Medicum. 2007;(2):43-47.
  3. Зайцева О.В. Муколитические препараты в терапии болезней органов дыхания у детей: современный взгляд на проблему. Русский медицинский журнал. 2003; 11 (1): 49-54.
  4. Коровина Н.А., Захарова И.Н., Заплатников А.Л., Овсянникова Е.М. Противокашлевые и отхаркивающие лекарственные средства в практике врача - педиатра: рациональный выбор и тактика применения. Пособие для врачей. - Москва: РМАПО, 2002.
  5. Knowles M.R, Boucher R.C. Mucus clearance as a primary innate defense mechanism for mammalian airways. The Journal of Clinical Investigation. 2002; 109 (5): 571-577. https://doi.org/10.1172/jci15217
  6. Dreisin R.B, Mostow S.R. Sulfhydryl - mediated depression of ciliary activity: an adverse effect of acetylcysteine. J Lab Clin Med. 1979; 93 (4): 674-678.
  7. Roomans G.M, Tegner H, Toremalm N.G. Acetylcysteine and its derivatives: functional and morphological effects on tracheal mucosa in vitro. Eur J Respir Dis. 1983; 64 (6): 416-425.
  8. Olivieri D, Marsico S.A, Del Donno M. Improvement of mucociliary transport in smokers by mucolytics. Eur J Respir Dis Suppl. 1985; 139: 142-145.
  9. Stafanger G, Garne S, Howitz P, Morkassel E, Koch C. В The clinical effect and the effect on the ciliary motility of oral N-acetylcysteine in patients with cystic fibrosis and primary ciliary dyskinesia. Eur Respir J.1988; 1 (2): 161-167.
  10. Mata M, Sarrion I, Armengot M, Carda C, Martinez I, Melero J.A, Cortijo J. Respiratory Syncytial Virus Inhibits Ciliagenesis in Differentiated Normal Human Bronchial Epithelial Cells: Effectiveness of N-Acetylcysteine. Chu HW, ed. PLoS ONE. 2012; 7 (10): e48037. https://doi.org/10.1371/journal.pone.0048037
  11. Corthesy B. Role of secretory immunoglobulin A and secretory component in the protection of mucosal surfaces. Future Microbiol. 2010; 5: 817-29. https://doi.org/10.2217/fmb.10.39
  12. Mathias A, Pais B, Favre L, Benyacoub J, Corthésy B. Role of secretory IgA in the mucosal sensing of commensal bacteria. Gut Microbes. 2014; 5 (6): 688-695. https://doi.org/10.4161/19490976.2014.983763
  13. Stone K.D, Prussin C, Metcalfe D.D. IgE, Mast Cells, Basophils, and Eosinophils. The Journal of allergy and clinical immunology. 2010; 125 (2 Suppl 2): S73-S80. https://doi.org/10.1016/j.jaci.2009.11.017
  14. Della-Torre E, Lanzillotta M, Doglioni C. Immunology of IgG4-related disease. Clinical and Experimental Immunology. 2015; 181 (2):191-206. https://doi.org/10.1111/cei.12641
  15. Perugino C.A, Mattoo H, Mahajan V.S, Maehara T, Wallace Z.S, Pillai S, Stone J.H. Emerging Treatment Models in Rheumatology: IgG4-Related Disease: Insights into human immunology and targeted therapies. Arthritis Rheumatol. 2017; 69(9): 1722-1732. https://doi.org/10.1002/ art. 40365
  16. Kato A, Hulse K.E, Tan B.K, Schleimer R.P. B lymphocyte lineage cells and the respiratory system. The Journal of allergy and clinical immunology. 2013; 131 (4): 933-957. https://doi.org/10.1016/j.jaci. 2013.02.023
  17. Jeannin P, Delneste Y, Lecoanet-Henchoz S, Gauchat J.F, Life P, Holmes D, Bonnefoy J.Y. Thiols decrease human interleukin (IL) 4 production and IL-4-induced immunoglobulin synthesis. The Journal of Experimental Medicine. 1995; 182 (6): 1785-1792. https://doi.org/ 10.1084/jem.182.6.1785
  18. Yanagihara Y, Basaki Y, Kajiwara K, Ikizawa K. A thiol antioxidant regulates IgE isotype switching by inhibiting activation of nuclear factor - κB. J Allergy Clin Immunol. 1997; 100: 33-38. https://doi.org/ 10.1016/s0091-6749(97)70002-2
  19. Giordani L, Quaranta M.G, Malorni W, Boccanera M, Giacomini E, Viora M. N-acetylcysteine inhibits the induction of an antigen - specific antibody response down - regulating CD40 and CD27 co - stimulatory molecules. Clin Exp Immunol. 2002; 129 (2): 254-264. https://doi.org/ 10.1046/j.1365-2249.2002.01897.x
  20. Ercal N, Neal R, Treeratphan P, Lutz P.M, Hammond T.C, Dennery P.A, Spitz D.R. A role for oxidative stress in suppressing serum immunoglobulin levels in lead - exposed Fisher 344 rats. Arch Environ Contam Toxicol. 2000; 39 (2): 251-256. https://doi.org/10.1007/ s002440010102
  21. Wang J, Li Q, Xie J, Xu Y. Cigarette smoke inhibits BAFF expression and mucosal immunoglobulin A responses in the lung during influenza virus infection. Respiratory Research. 2015; 16 (1): 37. https://doi.org/ 10.1186/s12931-015-0201-y
  22. Ragland S.A, Criss A.K. From bacterial killing to immune modulation: Recent insights into the functions of lysozyme. Bliska J.B, ed. PLoS Pathogens. 2017; 13 (9): e1006512. https://doi.org/10.1371/journal. ppat.1006512
  23. Tse H.N, Tseng C.Z.S. Update on the pathological processes, molecular biology, and clinical utility of N-acetylcysteine in chronic obstructive pulmonary disease. International Journal of Chronic Obstructive Pulmonary Disease. 2014; 9: 825-836. https://doi.org/10.2147/copd. s51057
  24. Eklund A, Eriksson O, Hakansson L et al. Oral N-acetylcysteine reduces selected humoral markers of inflammatory cell activity in BAL fluid from healthy smokers: correlation to effects on cellular variables. Eur Respir J. 1988; 1 (9): 832-838.
  25. Walters M.T, Rubin C.E, Keightley S.J. A double - blind, cross - over, study of oral N-acetylcysteine in Sjögren’s syndrome. Scand J Rheumatol Suppl. 1986 61: 253-258.
  26. An J-Y, Lee H-N, Park K-I, Kim J-Y, Lee J-Y, Park K-H. Effects of N-acetylcysteine (NAC) on non - specific immune parameters, respiratory burst and lysozyme activities, in different fishes. Journal of fish pathology. 2012; 25: 1-10. http://dx.doi.org/10.7847/jfp.2012.25.1.001
  27. Monick M.M, Samavati L, Butler N.S, Mohning M, Powers L.S, Yarovinsky T, Spitz D.R, Hunninghake G.W. Intracellular thiols contribute to Th2 function via a positive role in IL-4 production. J Immunol. 2003; 171 (10): 5107-5115. https://doi.org/10.4049/jimmunol. 171.10.5107
  28. Elferink J.G, de Koster B.M. N-acetylcysteine causes a transient stimulation of neutrophil migration. Immunopharmacology. 1998; 38 (3): 229-236. https://doi.org/10.1016/s0162-3109(97)00056-8
  29. Hasan M.A, Ahn W-G, Song D-K. N-acetyl-L-cysteine and cysteine increase intracellular calcium concentration in human neutrophils. Korean J Physiol Pharmacol. 2016; 20 (5): 449-457. https://doi.org/ 10.4196/kjpp.2016.20.5.449
  30. Heller A.R, Groth G, Heller S.C, Breitkreutz R, Nebe T, Quintel M, Koch T. N-acetylcysteine reduces respiratory burst but augments neutrophil phagocytosis in intensive care unit patients. Crit Care Med. 2001; 29 (2): 272-276. https://doi.org/10.1097/00003246-200102000-00009
  31. Paulsen O, Forsgren A. Effects of N-acetylcysteine on human polymorphonuclear leukocytes. APMIS. 1989; 97 (2): 115-119. https://doi. org/10.1111/j.1699-0463.1989.tb00764.x
  32. Linden M, Wieslander E, Eklund A, Larsson K, Brattsand R. Effects of oral N-acetylcysteine on cell content and macrophage function in bronchoalveolar lavage from healthy smokers. Eur Respir J. 1988; 1 (7): 645-650.
  33. Pinar Karapinar S, Ulum Y.Z, Ozcelik B, Dogan Buzoglu H, Ceyhan D, Balci Peynircioglu B, Aksoy Y. The effect of N-acetylcysteine and calcium hydroxide on TNF-α and TGF-β1 in lipopolysaccharide - activated macrophages. Arch Oral Biol. 2016; 68: 48-54. https://doi.org/ 10.1016/j.archoralbio.2016.03.017
  34. Gosset P, Wallaert B, Tonnel A.B, Fourneau C. Thiol regulation of the production of TNF-alpha, IL-6 and IL-8 by human alveolar macrophages. Eur Respir J. 1999; 14 (1): 98-105. https://doi.org/ 10.1034/j.1399-3003.1999.14a17.x
  35. Cu A, Ye Q, Sarria R, Nakamura S, Guzman J, Costabel U. N-acetylcysteine inhibits TNF-alpha, sTNFR, and TGF-beta1 release by alveolar macrophages in idiopathic pulmonary fibrosis in vitro. Sarcoidosis Vasc Diffuse Lung Dis. 2009; 26 (2): 147-154.
  36. Riise G.C, Qvarfordt I, Larsson S, Eliasson V, Andersson B.A. Inhibitory effect of N-acetylcysteine on adherence of Streptococcus pneumoniae and Haemophilus influenzae to human oropharyngeal epithelial cells in vitro. Respiration. 2000; 67 (5): 552-558. https://doi.org/ 10.1159/000067473
  37. Zheng C.H, Ahmed K, Rikitomi N, Martinez G, Nagatake T. The effects of S-carboxymethylcysteine and N-acetylcysteine on the adherence of Moraxella catarrhalis to human pharyngeal epithelial cells. Microbiol Immunol. 1999; 43 (2): 107-13. https://doi.org/10.1111/j.1348-0421.1999.tb02381.x
  38. Olofsson A.C, Hermansson M, Elwing H. N-acetyl-L-cysteine affects growth, extracellular polysaccharide production, and bacterial biofilm formation on solid surfaces. Appl Environ Microbiol. 2003; 69: 4814-4822. https://doi.org/10.1128/aem.69.8.4814-4822.2003
  39. Marchese A, Bozzolasco M, Gualco L, Debbia E.A, Schito G.C, Schito A.M. Effect of fosfomycin alone and in combination with N-acetylcysteine on E. coli biofilms. Int J Antimicrob Agents. 2003; 22 (Suppl 2): 95-100. https://doi.org/10.1016/s0924-8579(03)00232-2
  40. Perez-Giraldo C, Rodríguez-Benito A, Morán F.J, Hurtado C, Blanco M.T, Gómez-García A.C. Influence of N-acetylcysteine on the formation of biofilm by Staphylococcus epidermidis. J Antimicrob Chemother. 1997; 39: 643-646. https://doi.org/10.1093/jac/39.5.643
  41. del Prado G, Ruiz V, Naves P, Rodríguez-Cerrato V, Soriano F, del Carmen Ponte M. Biofilm formation by Streptococcus pneumoniae strains and effects of human serum albumin, ibuprofen, N-acetyl - l - cysteine, amoxicillin, erythromycin, and levofloxacin. Diagn Microbiol Infect Dis. 2010; 67: 311-318. https://doi.org/10.1016/j.diagmicrobio.2010.03.016
  42. Zhao T, Liu Y. N-acetylcysteine inhibit biofilms produced by Pseudomonas aeruginosa. BMC Microbiol. 2010; 10: 140. https://doi. org/10.1186/1471-2180-10-140
  43. Blasi F, Page C, Rossolini G.M, Pallecchi L, Matera M.G, Rogliani P, Cazzola M. The effect of N-acetylcysteine on biofilms: Implications for the treatment of respiratory tract infections. Respir Med. 2016; 117: 190-197. https://doi.org/10.1016/j.rmed.2016.06.015
  44. Dinicola S, De Grazia S, Carlomagno G, Pintucci J.P. N-acetylcysteine as powerful molecule to destroy bacterial biofilms. Asystematicreview. Eur Rev Med Pharmacol Sci. 2014; 18 (19): 2942-2948.
  45. Domenech M, García E. N-Acetyl - l - Cysteine and Cysteamine as New Strategies against Mixed Biofilms of Nonencapsulated Streptococcus pneumoniae and Nontypeable Haemophilus influenzae. Antimicrobial Agents and Chemotherapy. 2017; 61 (2): e01992-16. https://doi.org/ 10.1128/aac.01992-16
  46. Valle J, Latasa C, Gil C, Toledo-Arana A, Solano C, Penadés J.R, Lasa I. Bap, a Biofilm Matrix Protein of Staphylococcus aureus Prevents Cellular Internalization through Bindingto GP96 HostReceptor. PLoS Pathogens. 2012; 8 (8): e1002843. https://doi.org/10.1371/journal. ppat.1002843

© ООО "Консилиум Медикум", 2018

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 
 


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах