Современные вызовы терапии коморбидных пациентов: новый взгляд на целекоксиб

Обложка

Цитировать

Полный текст

Аннотация

Использование нестероидных противовоспалительных препаратов (НПВП) в качестве лекарственной терапии широкого спектра заболеваний растет, отчасти – из-за увеличения численности пожилого населения. Пациенты пожилого возраста отличаются повышенной уязвимостью для нежелательных реакций от лекарственных средств, включая побочные эффекты и неблагоприятные последствия межлекарственных взаимодействий, часто встречающихся у данной категории пациентов в связи с полиморбидностью и полипрагмазией. Одним из наиболее популярных в мире НПВП является целекоксиб. Это селективный ингибитор циклооксигеназы (ЦОГ)-2, ингибирующее действие которого на ЦОГ-2 в 375 раз сильнее, чем на ЦОГ-1. Благодаря этому целекоксиб имеет более высокий профиль безопасности для желудочно-кишечного тракта по сравнению с неселективными НПВП. Переносимость со стороны желудочно-кишечного тракта является важным фактором, который врачи должны учитывать при выборе НПВП для пациентов пожилого возраста. Целекоксиб можно применять при широком спектре заболеваний опорно-двигательного аппарата и ревматологических заболеваниях, для лечения острой боли у женщин при первичной дисменорее. Он также все чаще используется как часть мультимодального режима периоперационного обезболивания. Появляются убедительные доказательства того, что ЦОГ-2 активно участвует в патогенезе ишемического повреждения головного мозга, а также в развитии и прогрессировании нейродегенеративных заболеваний, таких как болезнь Альцгеймера. НПВП являются терапией 1-й линии при лечении острых приступов мигрени. Целекоксиб хорошо переносится пациентами, имеющими факторы риска развития НПВП-ассоциированной нефропатии. Данный препарат не вызывает снижения скорости клубочковой фильтрации у больных пожилого возраста и пациентов с хронической почечной недостаточностью. Многочисленные метаанализы и эпидемиологические исследования не подтвердили повышенный риск сердечно-сосудистых осложнений, наблюдавшийся в предыдущих клинических исследованиях, и не выявили повышения риска сердечно-сосудистых заболеваний при приеме целекоксиба независимо от дозировки. Активация ЦОГ-2 является одним из ключевых факторов, способствующих воспалению, связанному с ожирением. Специфическое ингибирование ЦОГ-2 целекоксибом повышает чувствительность к инсулину у пациентов с избыточной массой тела или ожирением. Использование комбинированной терапии может стать новой многообещающей областью лечения ожирения и сахарного диабета.

Об авторах

Сергей Кенсаринович Зырянов

ФГАОУ ВО «Российский университет дружбы народов им. Патриса Лумумбы»

Email: zyryanov-sk@rudn.university
ORCID iD: 0000-0002-6348-6867
SPIN-код: 2725-9981
Scopus Author ID: 35796816700

доктор мед. наук, проф., зав. каф. общей и клинической фармакологии

Россия, Москва

Елена Александровна Байбулатова

ФГАОУ ВО «Российский университет дружбы народов им. Патриса Лумумбы»

Автор, ответственный за переписку.
Email: baybulatova_ea@pfur.ru
ORCID iD: 0000-0003-3013-5697
SPIN-код: 8415-5675
Scopus Author ID: 57211403718

кандидат мед. наук, доц. каф. общей и клинической фармакологии

Россия, Москва

Список литературы

  1. Conaghan P.G. A turbulent decade for NSAIDs: Update on current concepts of classification, epidemiology, comparative efficacy, and toxicity. Rheumatol Int. 2012;32(6):1491-502. doi: 10.1007/s00296-011-2263-6
  2. Wongrakpanich S, Wongrakpanich A, Melhado K, Rangaswami J. A comprehensive review of non-steroidal anti-inflammatory drug use in the elderly. Aging Dis. 2018;9(1):143-50. doi: 10.14336/AD.2017.0306
  3. Зырянов С.К., Ушкалова Е.А., Бутранова О.И. Анальгетики в гериатрии. М.: ГЭОТАР-Медиа, 2023 [Zyrianov SK, Ushkalova EA, Butranova OI. Anal'getiki v geriatrii. Moscow: GEOTAR-Media, 2023 (in Russian)]. doi: 10.33029/9704-7879-0-ANA-2023-1-272
  4. Monteiro C, Silvestre S, Duarte AP, Alves G. Safety of non-steroidal anti-inflammatory drugs in the elderly: An analysis of published literature and reports sent to the portuguese pharmacovigilance system. Int J Environ Res Public Health. 2022;19(6):3541. doi: 10.3390/ijerph19063541
  5. Vane JR, Botting RM. Mechanism of action of nonsteroidal anti-inflammatory drugs. Am J Med. 1998;104(3A):2S-8S; discussion 21S-2S. doi: 10.1016/s0002-9343(97)00203-9
  6. Rao P, Knaus EE. Evolution of nonsteroidal anti-inflammatory drugs (NSAIDs): cyclooxygenase (COX) inhibition and beyond. J Pharm Pharm Sci. 2008;11(2):81s-110s. doi: 10.18433/j3t886
  7. Vane JR. The fight against rheumatism: from willow bark to COX-1 sparing drugs. J Physiol Pharmacol. 2000;51(4 Pt. 1):573-86. PMID: 11192932
  8. García Rodríguez LA, Barreales Tolosa L. Risk of upper gastrointestinal complications among users of traditional NSAIDs and COXIBs in the general population. Gastroenterology. 2007;132(2):498-506. doi: 10.1053/j.gastro.2006.12.007
  9. Zhang W, Doherty M, Arden N, et al.; EULAR Standing Committee for International Clinical Studies Including Therapeutics (ESCISIT). EULAR evidence based recommendations for the management of hip osteoarthritis: Report of a task force of the EULAR Standing Committee for International Clinical Studies Including Therapeutics (ESCISIT). Ann Rheum Dis. 2005;64(5):669-81. doi: 10.1136/ard.2004.028886
  10. Paulson SK, Vaughn MB, Jessen SM, et al. Pharmacokinetics of celecoxib after oral administration in dogs and humans: Effect of food and site of absorption. J Pharmacol Exp Ther. 2001;297(2):638-45. PMID: 11303053
  11. Bąk U, Krupa A. Challenges and opportunities for celecoxib repurposing. Pharm Res. 2023;40(10):2329-45. doi: 10.1007/s11095-023-03571-4
  12. Pitchon DN, Dayan AC, Schwenk ES, et al. Updates on multimodal analgesia for orthopedic surgery. Anesthesiol Clin. 2018;36(3):361-73. doi: 10.1016/j.anclin.2018.05.001
  13. Vardeh D, Wang D, Costigan M, et al. COX2 in CNS neural cells mediates mechanical inflammatory pain hypersensitivity in mice. J Clin Invest. 2009;119(2):287-94. doi: 10.1172/JCI37098
  14. Gilron I, Milne B, Hong M. Cyclooxygenase-2 inhibitors in postoperative pain management: Current evidence and future directions. Anesthesiology. 2003;99(5):1198-208. doi: 10.1097/00000542-200311000-00029
  15. Gajraj NM. Cyclooxygenase-2 inhibitors. Anesth Analg. 2003;96(6):1720-38. doi: 10.1213/01.ANE.0000061461.55712.C5
  16. Joshi W, Connelly NR, Reuben SS, et al. An evaluation of the safety and efficacy of administering rofecoxib for postoperative pain management. Anesth Analg. 2003;97(1):35-8. doi: 10.1213/01.ane.0000069507.93582.6e
  17. Rømsing J, Møiniche S. A systematic review of COX-2 inhibitors compared with traditional NSAIDs, or different COX-2 inhibitors for post-operative pain. Acta Anaesthesiol Scand. 2004;48(5):525-46. doi: 10.1111/j.0001-5172.2004.00379.x
  18. Kharasch ED. Perioperative COX-2 inhibitors: Knowledge and challenges. Anesth Analg. 2004;98(1):1-3. doi: 10.1213/01.ANE.0000100738.05755.6F
  19. Dembo G, Park SB, Kharasch ED. Central nervous system concentrations of cyclooxygenase-2 inhibitors in humans. Anesthesiology. 2005;102(2):409-15. doi: 10.1097/00000542-200502000-00026
  20. Kato M, Nishida S, Kitasato H, et al. Cyclooxygenase-1 and cyclooxygenase-2 selectivity of non-steroidal anti-inflammatory drugs: Investigation using human peripheral monocytes. J Pharm Pharmacol. 2001;53(12):1679-85. doi: 10.1211/0022357011778070
  21. Penning TD, Talley JJ, Bertenshaw SR, et al. Synthesis and biological evaluation of the 1,5-diarylpyrazole class of cyclooxygenase-2 inhibitors: Identification of 4-[5-(4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benze nesulfonamide (SC-58635, celecoxib). J Med Chem. 1997;40(9):1347-65. doi: 10.1021/jm960803q
  22. Yoshino T, Kimoto A, Kobayashi S, et al. Pharmacological profile of celecoxib, a specific cyclooxygenase-2 inhibitor. Arzneimittelforschung. 2005;55(7):394-402. doi: 10.1055/s-0031-1296878
  23. Simon LS, Weaver AL, Graham DY, et al. Anti-inflammatory and upper gastrointestinal effects of celecoxib in rheumatoid arthritis: A randomized controlled trial. JAMA. 1999;282(20):1921-8. doi: 10.1001/jama.282.20.1921
  24. Singh G, Fort JG, Goldstein JL, et al.; SUCCESS-I Investigators. Celecoxib versus naproxen and diclofenac in osteoarthritis patients: SUCCESS-I Study. Am J Med. 2006;119(3):255-66. doi: 10.1016/j.amjmed.2005.09.054. Erratum in: Am J Med. 2006;119(9):801.
  25. Ishiguro N, Hanaoka A, Okada T, Ito M. Efficacy and safety of celecoxib compared with placebo and etodolac for acute postoperative pain: A multicenter, double-blind, randomized, parallel-group, controlled trial. Nagoya J Med Sci. 2015;77(1-2):81-93. PMID: 25797973
  26. Woolf CJ; American College of Physicians; American Physiological Society. Pain: Moving from symptom control toward mechanism-specific pharmacologic management. Ann Intern Med. 2004;140(6):441-51. doi: 10.7326/0003-4819-140-8-200404200-00010
  27. Woolf CJ, Chong MS. Preemptive analgesia: Treating postoperative pain by preventing the establishment of central sensitization. Anesth Analg. 1993;77(2):362-79. doi: 10.1213/00000539-199377020-00026
  28. Woolf CJ, Salter MW. Neuronal plasticity: Increasing the gain in pain. Science. 2000;288(5472):1765-9. doi: 10.1126/science.288.5472.1765
  29. Dirks J, Moiniche S, Hilsted KL, Dahl JB. Mechanisms of postoperative pain: Clinical indications for a contribution of central neuronal sensitization. Anesthesiology. 2002;97(6):1591-6. doi: 10.1097/00000542-200212000-00035
  30. Samad TA, Sapirstein A, Woolf CJ. Prostanoids and pain: Unraveling mechanisms and revealing therapeutic targets. Trends Mol Med. 2002;8(8):390-6. doi: 10.1016/s1471-4914(02)02383-3
  31. Svensson CI, Yaksh TL. The spinal phospholipase-cyclooxygenase-prostanoid cascade in nociceptive processing. Annu Rev Pharmacol Toxicol. 2002;42:553-83. doi: 10.1146/annurev.pharmtox.42.092401.143905
  32. Geisslinger G, Muth-Selbach U, Coste O, et al. Inhibition of noxious stimulus-induced spinal prostaglandin E2release by flurbiprofen enantiomers: A microdialysis study. J Neurochem. 2000;74(5):2094-100. doi: 10.1046/j.1471-4159.2000.0742094.x
  33. Yaksh TL, Dirig DM, Conway CM, et al. The acute antihyperalgesic action of nonsteroidal, anti-inflammatory drugs and release of spinal prostaglandin E2 is mediated by the inhibition of constitutive spinal cyclooxygenase-2 (COX-2) but not COX-1. J Neurosci. 2001;21(16):5847-53. doi: 10.1523/JNEUROSCI.21-16-05847.2001
  34. Samad TA, Moore KA, Sapirstein A, et al. Interleukin-1β-mediated induction of COX-2 in the CNS contributes to inflammatory pain hypersensitivity. Nature. 2001;410(6827):471-5. doi: 10.1038/35068566
  35. Chen C, Magee JC, Bazan NG. Cyclooxygenase-2 regulates prostaglandin E2signaling in hippocampal long-term synaptic plasticity. J Neurophysiol. 2002;87(6):2851-7. doi: 10.1152/jn.2002.87.6.2851
  36. McCrory C, Fitzgerald D. Spinal prostaglandin formation and pain perception following thoracotomy: A role for cyclooxygenase-2. Chest. 2004;125(4):1321-7. doi: 10.1378/chest.125.4.1321
  37. Ghilardi JR, Svensson CI, Rogers SD, et al. Constitutive spinal cyclooxygenase-2 participates in the initiation of tissue injury-induced hyperalgesia. J Neurosci. 2004;24(11):2727-32. doi: 10.1523/JNEUROSCI.5054-03.2004
  38. Terrando N, Monaco C, Ma D, et al. Tumor necrosis factor-alpha triggers a cytokine cascade yielding postoperative cognitive decline. Proc Natl Acad Sci U S A. 2010;107(47):20518-22. doi: 10.1073/pnas.1014557107
  39. Cibelli M, Fidalgo AR, Terrando N, et al. Role of interleukin-1beta in postoperative cognitive dysfunction. Ann Neurol. 2010;68(3):360-8. doi: 10.1002/ana.22082
  40. Bernardino L, Xapelli S, Silva AP, et al. Modulator effects of interleukin-1beta and tumor necrosis factor-alpha on AMPA-induced excitotoxicity in mouse organotypic hippocampal slice cultures. J Neurosci. 2005;25(29):6734-44. doi: 10.1523/JNEUROSCI.1510-05.2005
  41. Banks WA, Gray AM, Erickson MA, et al. Lipopolysaccharide-induced blood-brain barrier disruption: Roles of cyclooxygenase, oxidative stress, neuroinflammation, and elements of the neurovascular unit. J Neuroinflammation. 2015;12:223. doi: 10.1186/s12974-015-0434-1
  42. Novakova I, Subileau EA, Toegel S, et al. Transport rankings of non-steroidal antiinflammatory drugs across blood-brain barrier in vitro models. PLoS One. 2014;9(1):e86806. doi: 10.1371/journal.pone.0086806
  43. Cahill CM, Taylor AM. Neuroinflammation-a co-occurring phenomenon linking chronic pain and opioid dependence. Curr Opin Behav Sci. 2017;13:171-7. doi: 10.1016/j.cobeha.2016.12.003
  44. Zhu Y, Yao R, Li Y, et al. Protective effect of celecoxib on early postoperative cognitive dysfunction in geriatric patients. Front Neurol. 2018;9:633. doi: 10.3389/fneur.2018.00633
  45. Wyss-Coray T, Mucke L. Inflammation in neurodegenerative disease: A double-edged sword. Neuron. 2002;35(3):419-32. doi: 10.1016/s0896-6273(02)00794-8
  46. Hoozemans JJ, Veerhuis R, Rozemuller AJ, Eikelenboom P. Non-steroidal anti-inflammatory drugs and cyclooxygenase in Alzheimer’s disease. Curr Drug Targets. 2003;4(6):461-8. doi: 10.2174/1389450033490902
  47. Teismann P, Tieu K, Choi DK, et al. Cyclooxygenase-2 is instrumental in Parkinson’s disease neurodegeneration. Proc Natl Acad Sci U S A. 2003;100(9):5473-8. doi: 10.1073/pnas.0837397100
  48. Candelario-Jalil E, Gonzalez-Falcon A, Garcia-Cabrera M, et al. Wide therapeutic time window for nimesulide neuroprotection in a model of transient focal cerebral ischemia in the rat. Brain Res. 2004;1007(1-2):98-108. doi: 10.1016/j.brainres.2004.01.078
  49. Wang X, Zhu M, Hjorth E, et al. Resolution of inflammation is altered in Alzheimer's disease. Alzheimers Dement. 2015;11(1):40-50.e1-2. doi: 10.1016/j.jalz.2013.12.024
  50. GBD 2019 Diseases and Injuries Collaborators Global Burden of 369 Diseases and Injuries in 204 Countries and Territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020;396(10258):1204-22. doi: 10.1016/S0140-6736(20)30925-9
  51. Santomauro DF, Herrera AMM, Shadid J, et al. Global Prevalence and Burden of Depressive and Anxiety Disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic. Lancet. 2021;398:1700-12. doi: 10.1016/S0140-6736(21)02143-7
  52. GBD 2019 Mental Disorders Collaborators Global, Regional, and National Burden of 12 Mental Disorders in 204 Countries and Territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Psychiatr. 2022;9(2):137-50. doi: 10.1016/S2215-0366(21)00395-3
  53. Gędek A, Szular Z, Antosik AZ, et al. Celecoxib for mood disorders: A systematic review and meta-analysis of randomized controlled trials. J Clin Med. 2023;12(10):3497. doi: 10.3390/jcm12103497
  54. Faridhosseini F, Sadeghi R, Farid L, Pourgholami M. Celecoxib: A new augmentation strategy for depressive mood episodes. A systematic review and meta-analysis of randomized placebo-controlled trials. Hum Psychopharmacol Clin Exp. 2014;29(3):216-23. doi: 10.1002/hup.2401
  55. Wang Z, Wu Q, Wang Q. Effect of celecoxib on improving depression: A systematic review and meta-analysis. World J Clin Cases. 2022;10(22):7872-82. doi: 10.12998/wjcc.v10.i22.7872
  56. Pardutz A, Schoenen J. NSAIDs in the acute treatment of migraine: A review of clinical and experimental data. Pharmaceuticals (Basel). 2010;3(6):1966-87. doi: 10.3390/ph3061966
  57. Lipton RB, Munjal S, Brand-Schieber E, et al. Efficacy, tolerability, and safety of DFN-15 (celecoxib oral solution, 25 mg/mL) in the acute treatment of episodic migraine: a randomized, double-blind, placebo-controlled study. Headache. 2020;60(1):58–70. doi: 10.1111/head.13663
  58. Lipton RB, Munjal S, Tepper SJ, et al. A multicenter, randomized, double-blind, placebo-controlled study of the efficacy, tolerability, and safety of celecoxib oral solution (ELYXYB) in acute treatment of episodic migraine with or without aura. J Pain Res. 2021;14:2529-42. doi: 10.2147/JPR.S322292
  59. Ailani J, Nahas SJ, Friedman DI, Kunkel T. The safety of celecoxib as an acute treatment for migraine: A narrative review. Pain Ther. 2023;12(3):655-69. doi: 10.1007/s40122-023-00501-5
  60. Sabzwari SR, Qidwai W, Bhanji S. Polypharmacy in elderly: A cautious trail to tread. J Pak Med Assoc. 2013;63(5):624-7. PMID: 23757993
  61. Abdulla A, Adams N, Bone M, et al.; British Geriatric Society. Guidance on the management of pain in older people. Age Ageing. 2013;42 (Suppl. 1):i1-57. doi: 10.1093/ageing/afs200
  62. Rostom A, Dube C, Wells G, et al. Prevention of NSAID-induced gastroduodenal ulcers. Cochrane Database Syst Rev. 2002;(4):CD002296. doi: 10.1002/14651858.CD002296
  63. Vandraas KF, Spigset O, Mahic M, Slørdal L. Non-steroidal anti-inflammatory drugs: Use and co-treatment with potentially interacting medications in the elderly. Eur J Clin Pharmacol. 2010;66(8):823-9. doi: 10.1007/s00228-010-0825-2
  64. Silverstein FE, Faich G, Goldstein JL, et al. Gastrointestinal toxicity with celecoxib vs nonsteroidal anti-inflammatory drugs for osteoarthritis and rheumatoid arthritis: the CLASS study: A randomized controlled trial. Celecoxib Long-term Arthritis Safety Study. JAMA. 2000;284(10):1247-55. doi: 10.1001/jama.284.10.1247
  65. Farkouh ME, Kirshner H, Harrington RA, et al.; TARGET Study Group. Comparison of lumiracoxib with naproxen and ibuprofen in the Therapeutic Arthritis Research and Gastrointestinal Event Trial (TARGET), cardiovascular outcomes: Randomised controlled trial. Lancet. 2004;364(9435):675-84. doi: 10.1016/S0140-6736(04)16894-3
  66. Bombardier C, Laine L, Reicin A, et al.; VIGOR Study Group. Comparison of upper gastrointestinal toxicity of rofecoxib and naproxen in patients with rheumatoid arthritis. VIGOR Study Group. N Engl J Med. 2000;343(21):1520-8, 2 p following 1528. doi: 10.1056/NEJM200011233432103
  67. Rahme E, Bardou M, Dasgupta K, et al. Hospitalization for gastrointestinal bleeding associated with non-steroidal anti-inflammatory drugs among elderly patients using low-dose aspirin: A retrospective cohort study. Rheumatology (Oxford). 2007;46(2):265-72. doi: 10.1093/rheumatology/kel223
  68. Mallen SR, Essex MN, Zhang R. Gastrointestinal tolerability of NSAIDs in elderly patients: a pooled analysis of 21 randomized clinical trials with celecoxib and nonselective NSAIDs. Curr Med Res Opin. 2011;27(7):1359-66. doi: 10.1185/03007995.2011.581274
  69. Beck LH. Changes in renal function with aging. Clin Geriatr Med. 1998;14(2):199-209. PMID: 9536101
  70. Epstein M. Aging and the kidney. J Am Soc Nephrol. 1996;7(8):1106-22. doi: 10.1681/ASN.V781106
  71. Lash JP, Gardner C. Effects of aging and drugs on normal renal function. Coron Artery Dis. 1997;8(8-9):489-94. PMID: 9431475
  72. Cooper K, Bennett WM. Nephrotoxicity of common drugs used in clinical practice. Arch Intern Med. 1987;147(7):1213-8. PMID: 3300586
  73. Blackshear JL, Davidman M, Stillman MT. Identification of risk for renal insufficiency from nonsteroidal anti-inflammatory drugs. Arch Intern Med. 1983;143(6):1130-4. PMID: 6860044
  74. Khan KNM, Venturini CM, Bunch RT, et al. Interspecies differences in renal localization of cyclooxygenase isoforms: Implications in nonsteroidal anti-inflammatory drug-related nephrotoxicity. Toxicol Pathol. 1998;26(5):612-20. doi: 10.1177/019262339802600504
  75. Harris RC, McKanna JA, Akai Y, et al. Cyclooxygenase-2 is associated with the macula densa of rat kidney and increases with salt restriction. J Clin Invest. 1994;94(6):2504-10. doi: 10.1172/JCI117620
  76. Vio CP, Cespedes C, Gallardo P, Masferrer JL. Renal identification of cyclooxygenase-2 in a subset of thick ascending limb cells. Hypertension. 1997;30(3 Pt. 2):687-92. doi: 10.1161/01.hyp.30.3.687
  77. O'Neill GP, Ford-Hutchinson AW. Expression of mRNA for cyclooxygenase-1 and cyclooxygenase-2 in human tissues. FEBS Lett. 1993;330(2):156-60. doi: 10.1016/0014-5793(93)80263-t
  78. Kömhoff M, Gröne H-J, Klein T, et al. Localization of cyclooxygenase-1 and -2 in adult and fetal human kidney: implication for renal function. Am J Physiol. 1997;272(4 Pt. 2):F460-8. doi: 10.1152/ajprenal.1997.272.4.F460
  79. Whelton A, Schulman G, Wallemark C, et al. Effects of celecoxib and naproxen on renal function in the elderly. Arch Intern Med. 2000;160(10):1465-70. doi: 10.1001/archinte.160.10.1465
  80. Baker M, Perazella MA. NSAIDs in CKD: Are they safe? Am J Kidney Dis. 2020;76(4):546-57. doi: 10.1053/j.ajkd.2020.03.023
  81. Whelton A, Maurath CJ, Verburg KM, Geis GS. Renal safety and tolerability of celecoxib, a novel cyclooxygenase-2 inhibitor. Am J Ther. 2000;7(3):159-75. doi: 10.1097/00045391-200007030-00004. Erratum in: Am J Ther. 2000;7(5):341.
  82. Nissen SE, Yeomans ND, Solomon DH, et al.; PRECISION Trial Investigators. Cardiovascular safety of celecoxib, naproxen, or ibuprofen for arthritis. N Engl J Med. 2016;375(26):2519-29. doi: 10.1056/NEJMoa1611593
  83. Gunter BR, Butler KA, Wallace RL, et al. Non-steroidal anti-inflammatory drug-induced cardiovascular adverse events: A meta-analysis. J Clin Pharm Ther. 2017;42(1):27-38. doi: 10.1111/jcpt.12484
  84. Sherve K, Gerard CJ, Neher JO, St Anna L. Cardiovascular effects of NSAIDs. Am Fam Physician. 2014;90(4). PMID: 25251008
  85. Cheng BR, Chen JQ, Zhang XW, et al. Cardiovascular safety of celecoxib in rheumatoid arthritis and osteoarthritis patients: A systematic review and meta-analysis. PLoS One. 2021;16(12):e0261239. doi: 10.1371/journal.pone.0261239
  86. Hernández-Díaz S, Varas-Lorenzo C, García Rodríguez LA. Non-steroidal antiinflammatory drugs and the risk of acute myocardial infarction. Basic Clin Pharmacol Toxicol. 2006;98(3):266-74. doi: 10.1111/j.1742-7843.2006.pto_302.x
  87. Hirayama A, Tanahashi N, Daida H, et al. Assessing the cardiovascular risk between celecoxib and nonselective nonsteroidal antiinflammatory drugs in patients with rheumatoid arthritis and osteoarthritis. Circ J. 2014;78(1):194-205. doi: 10.1253/circj.CJ-12-1573
  88. White WB, Kent J, Taylor A, et al. Effects of celecoxib on ambulatory blood pressure in hypertensive patients on ACE inhibitors. Hypertension. 2002;39(4):929-34. doi: 10.1161/01.hyp.0000014323.99765.16
  89. Whelton A, Lefkowith JL, West CR, Verburg KM. Cardiorenal effects of celecoxib as compared with the nonsteroidal anti-inflammatory drugs diclofenac and ibuprofen. Kidney Int. 2006;70(8):1495-502. doi: 10.1038/sj.ki.5001766
  90. Chan PC, Liao MT, Hsieh PS. The dualistic effect of COX-2-mediated signaling in obesity and insulin resistance. Int J Mol Sci. 2019;20(13):3115. doi: 10.3390/ijms20133115
  91. González-Ortiz M, Pascoe-González S, Esperanzamartínez-Abundis, et al. Effect of celecoxib, a cyclooxygenase-2-specific inhibitor, on insulin sensitivity, C-reactive protein, homocysteine, and metabolic profile in overweight or obese subjects. Metab Syndr Relat Disord. 2005;3(2):95-101. doi: 10.1089/met.2005.3.95
  92. Konheim YL, Wolford JK. Association of a promoter variant in the inducible cyclooxygenase-2 gene (PTGS2) with type 2 diabetes mellitus in Pima Indians. Hum Genet. 2003;113(5):377-81. doi: 10.1007/s00439-003-1000-y
  93. Helmersson J, Vessby B, Larsson A, Basu S. Association of type 2 diabetes with cyclooxygenase-mediated inflammation and oxidative stress in an elderly population. Circulation. 2004;109(14):1729-34. doi: 10.1161/01.CIR.0000124718.99562.91
  94. Hsieh PS, Tsai HC, Kuo CH, et al. Selective COX2 inhibition improves whole body and muscular insulin resistance in fructose-fed rats. Eur J Clin Invest. 2008;38(11):812-9. doi: 10.1111/j.1365-2362.2008.02026.x
  95. Hsieh PS, Jin JS, Chiang CF, et al. COX-2-mediated inflammation in fat is crucial for obesity-linked insulin resistance and fatty liver. Obesity (Silver Spring). 2009;17(6):1150-7. doi: 10.1038/oby.2008.674
  96. Alpert E, Gruzman A, Tennenbaum T, Sasson S. Selective cyclooxygenase-2 inhibitors stimulate glucose transport in L6 myotubes in a protein kinase Cdelta-dependent manner. Biochem Pharmacol. 2007;73(3):368-77. doi: 10.1016/j.bcp.2006.10.008
  97. El-Bahrawy H, Hegazy S, Farrag W, Werida R. Targeting inflammation using celecoxib with glimepiride in the treatment of obese type 2 diabetic Egyptian patients. Int J Diabetes Dev Ctries. 2017;37:97-102. doi: 10.1007/s13410-015-0355-7
  98. Bessone F, Hernandez N, Roma MG, et al. Hepatotoxicity induced by coxibs: How concerned should we be? Expert Opin Drug Saf. 2016;15(11):1463-75. doi: 10.1080/14740338.2016.1225719
  99. Soni P, Shell B, Cawkwell G, et al. The hepatic safety and tolerability of the cyclooxygenase-2 selective NSAID celecoxib: Pooled analysis of 41 randomized controlled trials. Curr Med Res Opin. 2009;25(8):1841-51. doi: 10.1185/03007990903018279
  100. Sriuttha P, Sirichanchuen B, Permsuwan U. Hepatotoxicity of nonsteroidal anti-inflammatory drugs: A systematic review of randomized controlled trials. Int J Hepatol. 2018;2018:5253623. doi: 10.1155/2018/5253623
  101. Demir S, Erdenen F, Gelincik A, et al. Evaluation of the potential risk factors for drug-induced anaphylaxis in adult patients. Int Arch Allergy Immunol. 2019;178(2):167-76. doi: 10.1159/000494130
  102. Alen Coutinho I, Ferreira D, Regateiro FS, et al. Anaphylaxis in an emergency department: A retrospective 10-year study in a tertiary hospital. Eur Ann Allergy Clin Immunol. 2020;52(1):23-34. doi: 10.23822/EurAnnACI.1764-1489.98
  103. Nguyen KD, Nguyen HA, Vu DH, et al. Drug-induced anaphylaxis in a vietnamese pharmacovigilance database: Trends and specific signals from a disproportionality analysis. Drug Saf. 2019;42(5):671-82. doi: 10.1007/s40264-018-0758-8
  104. Sari Dogan F, Ozaydin V. Drug-induced anaphylaxis in the emergency department – A prospective observational study. North Clin Istanb. 2021;8(6):595-600. doi: 10.14744/nci.2021.56667
  105. Blanca-Lopez N, Soriano V, Garcia-Martin E, et al. NSAID-induced reactions: Classification, prevalence, impact, and management strategies. J Asthma Allergy. 2019;12:217-33. doi: 10.2147/JAA.S164806
  106. Muñoz-Cano R, Pascal M, Araujo G, et al. Mechanisms, cofactors, and augmenting factors involved in anaphylaxis. Front Immunol. 2017;8:1193. doi: 10.3389/fimmu.2017.01193
  107. Butranova O, Zyryanov S, Gorbacheva A, et al. Drug-induced anaphylaxis: National database analysis. Pharmaceuticals (Basel). 2024;17(1):90. doi: 10.3390/ph17010090
  108. Viola M, Quaratino D, Gaeta F, et al. Celecoxib tolerability in patients with hypersensitivity (mainly cutaneous reactions) to nonsteroidal anti-inflammatory drugs. Int Arch Allergy Immunol. 2005;137(2):145-50. doi: 10.1159/000085794
  109. Roll A, Wüthrich B, Schmid-Grendelmeier P, et al. Tolerance to celecoxib in patients with a history of adverse reactions to nonsteroidal anti-inflammatory drugs. Swiss Med Wkly. 2006;136(43-44):684-90. doi: 10.4414/smw.2006.11358
  110. Veettil SK, Nathisuwan S, Ching SM, et al. Efficacy and safety of celecoxib on the incidence of recurrent colorectal adenomas: A systematic review and meta-analysis. Cancer Manag Res. 2019;11:561-71. doi: 10.2147/CMAR.S180261
  111. Meara AS, Simon LS. Advice from professional societies: Appropriate use of NSAIDs. Pain Med. 2013;14 (Suppl. 1):S3-10. doi: 10.1111/pme.12282
  112. By the American Geriatrics Society 2015 Beers Criteria Update Expert Panel. American Geriatrics Society 2015 Updated Beers Criteria for Potentially Inappropriate Medication Use in Older Adults. J Am Geriatr Soc. 2015;63(11):2227-46. doi: 10.1111/jgs.13702
  113. Jørgensen HS, Christensen HR, Kampmann JP. Interaction between digoxin and indomethacin or ibuprofen. Br J Clin Pharmacol. 1991;31(1):108-10. doi: 10.1111/j.1365-2125.1991.tb03867.x
  114. Moore N, Pollack C, Butkerait P. Adverse drug reactions and drug-drug interactions with over-the-counter NSAIDs. Ther Clin Risk Manag. 2015;11:1061-75. doi: 10.2147/TCRM.S79135

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Пагубное влияние передачи сигналов, опосредованной ЦОГ-2, на ожирение и резистентность к инсулину [90].

Скачать (185KB)

© ООО "Консилиум Медикум", 2024

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 
 


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах