Simulation of the Thermal Decomposition of Methane at Constant Volume and Temperature Using Methods of Molecular Dynamics and Thermodynamics

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The thermal decomposition of methane at constant temperatures and densities ranging from 0.05 to 0.524 g/cm3 has been simulated using methods of molecular dynamics and equilibrium thermodynamics. The molecular-dynamics simulation of the initial stage of methane decomposition has been performed using the reaction force field ReaxFF-lg at temperatures of 2500–4000 K. The simulation results showed that the methane decomposition consists of the successive formation and decay of radicals and light hydrocarbons and their replacement with polyatomic hydrocarbons of increasing complexity, similar to polycyclic aromatic hydrocarbons, whose decomposition and aggregation leads to generation of condensed-carbon nucleation centers. In turn, the results of the thermodynamic calculations indicate that the methane decomposition begins and occurs at lower temperatures as compared with the results of ultrashort nonequilibrium calculations by the molecular dynamics method. Thus, the application of molecular dynamics and thermodynamics methods for the same process presents extreme versions of possible sequences of states in the cases of ultrashort nonequilibrium and long-term, similar to equilibrium, processes of methane thermal decomposition.

作者简介

A. Kudinov

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Email: bogdanova.youlia@bk.ru
115409, Moscow, Russia

S. Gubin

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute); Semenov Institute of Chemical Physics, Russian Academy of Sciences

Email: bogdanova.youlia@bk.ru
115409, Moscow, Russia; 119991, Moscow, Russia

Yu. Bogdanova

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

编辑信件的主要联系方式.
Email: bogdanova.youlia@bk.ru
115409, Moscow, Russia

参考

  1. Gautier M., Rohani V., Fulcheri L. Direct Decarbonization of Methane by Thermal Plasma for the Production of Hydrogen and High Value-added Carbon Black // Int. J. Hydrog. Energy. 2017. V. 42. № 47. P. 28140.
  2. Kevorkian V., Heath C.E., Boudart M. The Decomposition of Methane in Shock Waves // J. Phys. Chem. 1960. V. 64. № 8. P. 964.
  3. Kozlov G.I., Knorre V.G. Single-pulse Shock tube Studies on the Kinetics of the Thermal Decomposition of Methane // Combust. Flame. 1962. V. 6. P. 253.
  4. Khan M.S., Crynes B.L. Survey of Recent Methane Pyrolysis Literature // Ind. Eng. Chem. 1970. V. 62. № 10. P. 54.
  5. Hartig R., Troe J., Wagner H.G. Thermal Decomposition of Methane behind Reflected Shock Waves // Symp. Combust. 1971. V. 13. № 1. P. 147.
  6. Chen C.J., Back M.H. The Thermal Decomposition of Methane. 1. Kinetics of the Primary Decomposition to C2H6 + H2; Rate Constant for the Homogeneous Unimolecular Dissociation of Methane and Its Pressure Dependence // Can. J. Chem. 1975. V. 53. P. 3580.
  7. Hidaka Y., Nakamura T., Tanaka H. et al. High Temperature Pyrolis of Methane in Shock Waves. Rates for Dissociative Recombination Reactions of Metil Radicals and Propyne Formation Reaction // Int. J. Chem. Kinet. 1990. V. 22. P. 701.
  8. Holmen A., Olsvik O., Rokstad O.A. Pyrolysis of Natural-gas Chemistry and Process Concepts // Fuel Process. Technol. 1995. V. 42. № 2–3. P. 249.
  9. Kee R.J., Rupley F.M., Miller J.A. et al. CHEMKIN Collection, Release 3.5. San Diego, CA: Reaction Design, Inc., 2000.
  10. Abbas H.F., Daud W.W. Hydrogen Production by Methane Decomposition: a Review // Int. J. Hydrogen Energy. 2010. V. 35. № 3. P. 1160.
  11. Pinilla J.L., Suelves I., Lázaro M.J., Moliner R. Kinetic Study of the Thermal Decomposition of Methane Using Carbonaceous Catalysts // Chem. Eng. J. 2008. V. 138. P. 301.
  12. Gaudernack B., Lynum S. Hydrogen from Natural Gas without Release of CO2 to the Atmosphere // Int. J. Hydrogen Energy. 1998. V. 23. № 12. P. 1087.
  13. Fulcheri L. Direct Decarbonization of Methane by Thermal Plasma for the Synthesis of Carbon Black and Hydrogen // Int. J. Hydrogen Energy. 2017. V. 42. № 47. P. 28140.
  14. Bogana M.P., Colombo L. Atomic Scale Simulations of Vapor Cooled Carbon Clusters // Appl. Phys. A: Mater. Sci. Process. 2007. V. 86. № 3. P. 275.
  15. Yamaguchi Y., Maruyama S. A Molecular Dynamics Simulation of the Fullerene Formation Process // Chem. Phys. Lett. 1998. V. 286. P. 336.
  16. Nyden M.R., Stoliarov S.I., Westmoreland P.R., Guo Z.X., Jee C. Applications of Reactive Molecular Dynamics to the Study of the Thermal Decomposition of Polymers and Nanoscale Structures // Matter. Sci. Eng. A. 2004. V. 365. P. 114.
  17. Galiullina G.M., Orekhov N.D., Stegailov V.V. Nucleation of Carbon Nanostructures: Molecular Dynamics with Reactive Potentials // J. Phys.: Conf. Ser. 2016. V. 774. 012033.
  18. Ostroumova G., Orekhov N., Stegailov V. Reactive Molecular-dynamics Study of Onion-like Carbon Nanoparticle Formation // Diamond Relat. Mater. 2019. V. 94. P. 14.
  19. Lummen N. REAX FF-molecular Dynamics Simulations of Non-oxidative and Non-catalysed Thermal Decomposition of Methane at High Temperatures // Phys. Chem. Chem. Phys. 2010. V. 12. P. 7873.
  20. Lummen N. Aggregation of Carbon in an Atmosphere of Molecular Hydrogen Investigated by REAXFF-molecular Dynamics Simulations // Comput. Mater. Sci. 2010. V. 49. P. 243.
  21. Liu L., Liu Y., Zybin S.V., Sun H., Goddard III W.A. Reaxff-lg: Correction of the REAXFF Reactive Force Field for London Dispersion, with Applications to the Equations of State for Energetic Materials // J. Phys. Chem. A. 2011. V. 115. P. 11016.
  22. LAMMPS – A Flexible Simulation Tool for Particle-based Materials Modeling at the Atomic, Meso, and Continuum Scales. https://www.lammps.org/
  23. Chenoweth K., Van Duin A.C.T., Goddard W.A.I. ReaxFF Reactive Force Field for Molecular Dynamics Simulations of Hydrocarbon Oxidation // J. Phys. Chem. A. 2008. V. 112. № 5. P. 1040.
  24. Mao Q., Ren Y., Luo K.H., van Duin A. Dynamics and Kinetics of Reversible Homo-molecular Dimerization of Polycyclic Aromatic Hydrocarbons // J. Chem. Phys. 2017. V. 147. P. 244305.
  25. Van Duin A.C.T., Dasgupta S., Lorant F., Goddard III W.A. Reaxff: A Reactive Force Field for Hydrocarbons // J. Phys. Chem. A. 2001. V. 105. P. 9396.
  26. Victorov S.B., El-Rabii H., Gubin S.A., Maklashova I.V., Bogdanova Yu.A. An Accurate Equation-of-state Model for Thermodynamic Calculations of Chemically Reactive Carbon-containing Systems // J. Energ. Mater. 2010. V. 28. P. 35.
  27. Kang H.S., Lee C.S., Ree T., Ree F.H. A Perturbation Theory of Classical Equilibrium Fluids // J. Chem. Phys. 1985. V. 82. № 1. P. 414.
  28. Богданова Ю.А., Губин С.А., Викторов С.Б., Губина Т.В. Теоретическая модель уравнения состояния двухкомпонентного флюида с потенциалом exp-6 на основе теории возмущений // ТВТ. 2015. Т. 53. № 4. С. 506.
  29. Губин С.А., Маклашова И.В. Термодинамические условия синтеза алмазов // V Междун. конф. “Лазерные, плазменные исследования и технологии” ЛАПЛАЗ-2019. Сб. науч. тр. М.: НИЯУ МИФИ, 2019. С. 277.
  30. Губин С.А., Джелилова Е.И., Маклашова И.В. Влияние формы и размера наночастиц на фазовую диаграмму углерода // Горение и взрыв. 2014. Т. 7. С. 226.
  31. Glosli J.N., Ree F.H. Liquid-liquid Phase Transformation in Carbon // Phys. Rev. Lett. 1999. V. 82. № 23. P. 4659.
  32. Одинцов В.В., Губин С.А., Пепекин В.И., Акимова Л.Н. Определение формы и размера кристаллов алмаза за детонационной волной в конденсированных взрывчатых веществах II // Хим. физика. 1991. Т. 10. № 5. С. 687.
  33. Wentorf Jr. R.H. The Behavior of Some Carbonaceous Materials at Very High Pressures and High Temperatures // J. Phys. Chem. 1965. V. 69. P. 3063.
  34. Bohme H., Jander H., Tanke D. PAH Growth and Soon Formation in the Pyrolysis of Acetylene and Benzene at High Temperature and Pressures: Modeling and Experiment // Symp. (Int.) Combust. 1998. V. 27. № 1. P. 1605.
  35. Chanyshev A.D., Litasov K.D., Shatskiy A. et al. Oligomerisation and Carbonization of Polycyclic Hydrocarbons at High-pressure Temperature // Carbon. 2015. V. 84. P. 225.
  36. Kim K.S., Seo J.H., Nam J.S., Ju W.T., Hong S.H. Production of Hydrogen and Carbon Black by Methane Decomposition Using DC-RF Hybrid Thermal Plasmas // IEEE Trans. Plasma Sci. 2005. V. 33. P. 813.
  37. Dean A.J., Hanson R.K. CH and C-atom Time Histories in Dilute Hydrocarbon Pyrolysis: Measurements and Kinetics Calculations // Int. J. Chem. Kinet. 1992. V. 24. P. 517.
  38. GuéRet C., Daroux M., Billaud F. Methane Pyrolysis: Thermodynamics // Chem. Eng. Sci. 1997. V. 52. P. 815.
  39. Michael J.V., Lim K.P., Kiefer J.H., Kumaran S.S. Thermal Decomposition of Carbon Tetrachloride // J. Phys. Chem. 1993. V. 97. P. 1914.
  40. Davydov V.A., Rakhmanina A.V., Agafonov V. et al. Conversion of Polycyclic Aromatic Hydrocarbons to Graphite and Diamond at High Pressures // Carbon. 2004. V. 42. P. 261.
  41. Sabbah H., Biennier L., Klippenstein S.J., Sims I.R., Rowe B.R. Exploring the Role of Pahs in the Formation of Soot: Pyrene Dimerization // J. Phys. Chem. Lett. 2010. V. 1. № 19. P. 2962.
  42. Gebbie M.A., Ishewata H., McQuade P.J. et al. Experimental Measurements of the Diamond Nucleation Landscape Reveals Classical and Nonclassical Features // PNAS. 2018. V. 115. № 33. P. 8284.
  43. Mao Q., Van Duin A.C.T., Luo K.H. Formation of Incipient Soot Particles from Polycyclic Aromatic Hydrocarbons: a Reaxff Molecular Dynamics Study // Carbon. 2017. V. 121. P. 380.
  44. Lumen A., Holmen O.A., Rokstad O.A., Solbakken A. High-temperature Pyrolysis of Hydrocarbons. 1. Methane to Acetylene // Ind. Eng. Chem. Proc. Des. Dev.1976. V. 15. P. 439.
  45. Martínez E., Perriot R., Kober E.M. Parallel Replica Dynamics Simulations of Reactions in Shock Compressed Liquid Benzene // J. Chem. Phys. 2019. V. 150. 244108.
  46. Moore D.S. Shock Physics at the Nanoscale // J. Opt. Soc. Am. B. 2018. V. 35. № 10. B1.
  47. Cawkwell M.J., Niklasson M.N., Dattelbaum D.M. Extended Lagrangian Born–Oppenheimer Molecular Dynamics Simulations of the Shock-induced Chemistry of Phenylacetylene // J. Chem. Phys. 2015. V. 142. 064512.
  48. Mahbubul I., Strachan A. Decomposition and Reaction of Polyvinyl Nitrate under Shock and Thermal Loading: a REAXFF Reactive Molecular Dynamics Study // J. Phys. Chem. C. 2017. V. 121. P. 22452.
  49. Brown K.E., Mcgrane S.D., Bolme C.A., Moore D.S. Ultrafast Chemical Reactions in Shocked Nitromethane Probed with Dynamic Ellipsometry and Transient Absorption Spectroscopy // J. Phys. Chem. A. 2014. V. 118. P. 2559.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (152KB)
3.

下载 (60KB)
4.

下载 (94KB)
5.

下载 (150KB)
6.

下载 (299KB)
7.

下载 (116KB)
8.

下载 (75KB)

版权所有 © А.В. Кудинов, С.А. Губин, Ю.А. Богданова, 2023

##common.cookie##