Shock-Wave Transformations of Fine-Grained Quartz Dispersed in a Silver Matrix

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Samples with porosities of 2–3 and 13% consisting of fine-grained quartz dispersed in a silver matrix were subjected to shock compression up to 28, 33, and 37 GPa in planar recovery ampoules. In samples with a porosity of 2–3%, after purification from silver, along with amorphized quartz, a crystalline high pressure silicon dioxide phase was detected by powder X-ray diffraction, which differs from stishovite and presumably has a monoclinic lattice.

Sobre autores

A. Zhukov

Federal Research Center for Problems of Chemical Physics and Medical Chemistry, Russian Academy of Sciences

Email: azhukov@icp.ac.ru
Chernogolovka, Russia

V. Yakushev

Federal Research Center for Problems of Chemical Physics and Medical Chemistry, Russian Academy of Sciences

Email: azhukov@icp.ac.ru
Chernogolovka, Russia

A. Rogacheva

Federal Research Center for Problems of Chemical Physics and Medical Chemistry, Russian Academy of Sciences

Autor responsável pela correspondência
Email: azhukov@icp.ac.ru
Chernogolovka, Russia

Bibliografia

  1. Wackerle J. Shock-wave Compression of Quartz // J. Appl. Phys. 1962. V. 33. № 3. P. 922.
  2. Трунин Р.Ф., Симаков Г.В., Подурец М.А., Моисеев Б.Н., Попов Л.В. Динамическая сжимаемость кварца и кварцита при высоких давлениях // Изв. АН СССР. Физика Земли. 1971. № 1. С. 13.
  3. Стишов С.М., Попова С.В. Новая модификация кремнезема // Геохимия. 1961. № 10. С. 837.
  4. Langenhorst F., Deutsch A. Shock Experiments on Pre-heated α- and β-Quartz: II. X-Ray and TEM Investigations // Earth Planet. Sci. Lett. 1994. V. 128. № 3–4. P. 683.
  5. De Carly P.S., Milton D.J. Stishovite: Synthesis by Shock Wave // Science. 1965. V. 147. № 3654. P. 144.
  6. Kleeman J.D., Ahrens T.J. Shock-induced Transition of Quartz to Stishovite // J. Geophys. Res. 1973. V. 78. № 26. P. 5954.
  7. Sekine T., Akaish M., Setaka N. Fe2N-type SiO2 from Shocked Quartz // Geochim. Cosmochim. Acta. 1987. V. 51. P. 379.
  8. Langenhorst F., Deutsch A. Shock Experiments on Pre-heated α- and β-Quartz: I. Optical and Density Data // Earth Planet. Sci. Lett. 1994. V. 125. P. 407.
  9. Akins J.A., Ahrens T.J. Dynamic Compression of SiO2: A New Interpretation // Geophys. Res. Lett. 2002. V. 29.
  10. Luo S.-N., Ahrens T.J., Asimow P.D. Polymorphism, Superheating, and Amorphization of Silica upon Shock Wave Loading and Release // J. Geophys. Res. 2003. V. 108. № B9. P. 2421.
  11. Skinner B.J., Fahey J.J. Observation on the Inversion of Stishovite to Silica Glass // J. Geophys. Res. 1963. V. 68. № 19. P. 5595.
  12. Brazhkin V.V., McNeil L.E., Grimsditch M., Bendeliani N.A., Dyuzheva T.I., Lityagina L.M. Elastic Constants of Stishovite up to its Amorphization Temperature // J. Phys.: Condens. Matter. 2005. V. 17. № 12. P. 1869.
  13. Kuznetsov N.M. Kinetics of Shock-induced Phase Transition of Quartz. In: High-pressure Shock Compression of Solids VII. High-pressure Shock Compression of Condensed Matter. N.Y., NY: Springer, 2004. P. 275.
  14. Mansfeld U., Langenhorst F., Ebert M., Kowitz A., Schmitt R.T. Microscopic Evidence of Stishovite Generated in Low-pressure Shock Experiments on Porous Sandstone: Constraints on its Genesis // Meteorit. Planet. Sci. 2017. V. 52. № 7. P. 1449.
  15. Stöffler D., Langenhorst F. Shock Metamorphism of Quartz in Nature and Experiment: I. Basic Observation and Theory // Meteoritics. 1994. V. 29. № 2. P. 155.
  16. Tracy S.J., Turneaure S.J., Duffy T.S. Structural Response of α-Quartz under Plate-impact Shock Compression // Sci. Adv. 2020. V. 6. № 35. P. eabb3913.
  17. Liu L.-G., Bassett W.A., Sharry J. New High-pressure Modifications of GeO2 and SiO2 // J. Geophys. Res. 1978. V. 83. № B5. P. 2301.
  18. Жуков А.Н., Закиев С.Е., Якушев В.В. Оценка влияния размера частиц на скорость выравнивания температуры в системах, используемых для ударно-волнового получения алмаза, кубического нитрида бора и γ-фазы нитрида кремния на основе простой модели // ТВТ. 2016. Т. 54. № 1. С. 51.
  19. Haines J., Léger J.M., Gorelli F., Hanfland M. Crystalline Post-quartz Phase in Silica at High Pressure // Phys. Rev. Lett. 2001. V. 87. № 15. P. 155503.
  20. Teter D.M., Hemley R.J., Kresse G., Hafner J. High Pressure Polymorphism in Silica // Phys. Rev. Lett. 1998. V. 80. № 10. P. 2145.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (56KB)
3.

Baixar (104KB)
4.

Baixar (23KB)
5.

Baixar (103KB)

Declaração de direitos autorais © А.Н. Жуков, В.В. Якушев, А.И. Рогачева, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies