Самоорганизация кластеров активных броуновских частиц в коллоидной плазме при воздействии лазерного излучения

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Кластеры активных броуновских частиц в газоразрядной плазме рассматриваются как открытые системы с обменом энергией с окружающей средой. Показана эволюция кластера из 19 активных броуновских частиц с частично поглощающей металлической поверхностью (так называемых янус-частиц) при воздействии на них интенсивного лазерного излучения. Экспериментально наблюдалось формирование сильно коррелированных кластеров заряженных частиц с ростом мощности лазерного излучения. На основе анализа траекторий частиц, области их локализации, изменения их кинетической энергии, фрактальной размерности и динамической энтропии при различных значениях плотности мощности лазерного излучения изучена самоорганизация кластера сильновзаимодействующих частиц в плазме высокочастотного тлеющего разряда.

Sobre autores

М. Васильев

ФГБУН Объединенный институт высоких температур РАН

Autor responsável pela correspondência
Email: vasiliev@ihed.ras.ru
Россия, Москва

А. Алексеевская

ФГБУН Объединенный институт высоких температур РАН

Email: vasiliev@ihed.ras.ru
Россия, Москва

К. Косс

ФГБУН Объединенный институт высоких температур РАН

Email: vasiliev@ihed.ras.ru
Россия, Москва

Е. Васильева

ФГБУН Объединенный институт высоких температур РАН

Email: vasiliev@ihed.ras.ru
Россия, Москва

О. Петров

ФГБУН Объединенный институт высоких температур РАН

Email: vasiliev@ihed.ras.ru
Россия, Москва

Bibliografia

  1. Ebeling W., Feistel R. Physics of Self-organization and Evolution. Weinheim: Wiley‒VCH, 2011.
  2. Prigogine I., Nicolis G., Babloyantz A. Thermodynamics of Evolution // Phys. Today. 1972. V. 25. № 11. P. 23.
  3. Petrosky T.Y., Prigogine I. Laws and Events: The Dynamical Basis of Self-organization // Canad. J. Phys. 1990. V. 68. № 9. P. 670.
  4. Shields C.W. IV, Velev O.D. The Evolution of Active Particles: Toward Externally Powered Self-propelling and Self-reconfiguring Particle Systems // Chem. 2017. V. 3. № 4. P. 539.
  5. Petrov O.F., Statsenko K.B., Vasiliev M.M. Active Brownian Motion of Strongly Coupled Charged Grains Driven by Laser Radiation in Plasma // Sci. Rep. 2022. V. 12. № 1. P. 8618.
  6. Su H., Hurd Price C.A., Jing L., Tian Q., Liu J., Qian K. Janus Particles: Design, Preparation, and Biomedical Applications // Mater. Today Bio. 2019. V. 4. P. 100033.
  7. Deng D., Argon A.S., Yip S. A Molecular Dynamics Model of Melting and Glass Transition in an Idealized Two-dimensional Material I // Phil. Trans. R. Soc. Lond. A. 1989. V. 329. 549.
  8. Allegrini P., Douglas J.F., Glotzer S.C. Dynamic Entropy as a Measure of Caging and Persistent Particle Motion in Supercooled Liquids // Phys. Rev. E. 1999. V. 60. P. 5714.
  9. Gaspard P., Wang X.-J. Noise, Chaos, and (ε, τ)-Entropy per Unit Time // Phys. Rep. 1993. V. 235. № 6. P. 291.
  10. Gaspard P., Nicolis G. Transport Properties, Lyapunov Exponents, and Entropy per Unit Time // Phys. Rev. Lett. 1990. V. 65. P. 1693.
  11. Mandelbrot B.B. The Fractal Geometry of Nature. San Francisco: W.H. Freeman and Co., 1982.
  12. Koss X.G., Petrov O.F., Statsenko K.B., Vasiliev M.M. Small Systems of Laser-driven Active Brownian Particles: Evolution and Dynamic Entropy // EPL. 2018. V. 124. P. 45 001.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (61KB)
3.

Baixar (140KB)
4.

Baixar (534KB)
5.

Baixar (19KB)
6.

Baixar (94KB)
7.

Baixar (105KB)
8.

Baixar (110KB)
9.

Baixar (112KB)

Declaração de direitos autorais © М.М. Васильев, А.А. Алексеевская, К.Г. Косс, Е.В. Васильева, О.Ф. Петров, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies