Pulse Impact on Cavitation Bubble Collapse

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We consider the effect of concentric pulse impact (an abrupt increase in liquid pressure at some distance from a collapsing bubble surface) on the collapse of a spherical cavitation bubble in water. The vapor dynamics within the bubble and movement of the surrounding liquid are described by gasdynamic equations, closed by wide-range state equations. The thermal conductivity of both phases and heat and mass transfer on the surface of the bubble are taken into account. The calculation technique involves moving grids converging toward the bubble’s explicitly defined surface. The modified high-accuracy Godunov method is used. It has been found that the pulse impact accelerates the bubble collapse, and the bubble’s radius and pressure within its cavity increase at the end of the collapse. Under pulse impact, collapse of the bubble is accompanied by the periodic focusing of radially converging compression waves in the center of the bubble. At moments of focusing, the pressure in the small vicinity of the bubble center significantly increases. These noted features intensify with an increase in the amplitude of the impulse impact.

Sobre autores

A. Aganin

Institute of Mechanics and Engineering, Federal Research Center Kazan Scientific Center, Russian Academy of Sciences

Email: aganin_aa@imm.knc.ru
420111, Kazan, Russia

N. Khismatullina

Institute of Mechanics and Engineering, Federal Research Center Kazan Scientific Center, Russian Academy of Sciences

Email: nailya_hism@mail.ru
420111, Kazan, Russia

R. Nigmatulin

Institute of Mechanics and Engineering, Federal Research Center Kazan Scientific Center, Russian Academy of Sciences

Autor responsável pela correspondência
Email: nailya_hism@mail.ru
420111, Kazan, Russia

Bibliografia

  1. Нигматулин Р.И. Динамика многофазных сред. В 2-х т. М.: Наука, 1987.
  2. Aganin A.A., Mustafin I.N. Outgoing Shock Waves at Collapse of a Cavitation Bubble in Water // Int. J. Multiphase Flow. 2021. V. 144. P. 103792.
  3. Tullis J.P. Hydraulics of Pipelines: Pumps, Valves, Cavitation, Transients. John Wiley & Sons, Inc., 1989.
  4. Coleman A., Saunders J., Crum L., Dyson M. Acoustic Cavitation Generated by an Ex-tracorporeal Shockwave Lithotripter // Ultrasound Med. Biol. 1987. V. 13. № 2. P. 69.
  5. Song W.D., Hong M.H., Lukyanchuk B., Chong T.C. Laser-Induced Cavitation Bubbles for Cleaning of Solid Surfaces // J. Appl. Phys. 2004. V. 95. № 6. P. 2952.
  6. Нигматулин Р.И., Аганин А.А., Ильгамов М.А., Топорков Д.Ю. Зависимость коллапса парового пузырька в горячем тетрадекане от давления жидкости // Теплофизика и аэромеханика. 2019. Т. 26. № 6. С. 931.
  7. Аганин А.А., Халитова Т.Ф. Влияние температуры жидкости на сильное сжатие кавитационного пузырька // Уч. зап. Казанск. ун-та. Сер. Физ.-матем. науки. 2019. Т. 161. Кн. 1. С. 53.
  8. Аганин А.А., Халитова Т.Ф., Хисматуллина Н.А. Численное моделирование радиально сходящихся ударных волн в полости пузырька // Матем. моделирование. 2014. Т. 26. № 4. С. 3.
  9. Аганин А.А., Ильгамов М.А., Топорков Д.Ю. Возможности повышения температуры жидкости в проблеме сверхсжатия пузырька акустическим воздействием // Уч. зап. Казанск. ун-та. Сер. Физ.-матем. науки. 2019. Т. 161. Кн. 4. С. 485.
  10. Klaseboer E., Khoo B., Hung K. Dynamics of an Oscillating Bubble near a Floating Structure // J. Fluids Struct. 2005. V. 21. P. 395.
  11. Robinson P.B., Blake J.R., Kodama T., Shima A., Tomita Y. Interaction of Cavitation Bubbles with a Free Surface // J. Appl. Phys. 2001. V. 89. № 12. P. 8225.
  12. Blake J.R., Robinson P.B., Shima A., Tomita Y. Interaction of Two Cavitation Bubbles with a Rigid Boundary // J. Fluid Mech. 1993. V. 255. P. 707.
  13. Xu W., Zhang Y., Luo J., Arong, Zhang Q., Zhai Y. The Impact of Particles on the Collapse Characteristics of Cavitation Bubbles // Ocean Engineering. 2017. V. 131. P. 15.
  14. Vogel A., Busch S., Parlitz U. Shock Wave Emission and Cavitation Bubble Generation by Picosecond and Nanosecond Optical Breakdown in Water // J. Acoust. Soc. Am. 1996. V. 100. № 1. P. 148.
  15. Wang Y.-C., Brennen C.E. Shock Wave Development in the Collapse of a Cloud of Bubbles // Cavitation and Multiphase Flow. 1994. V. 194. № 15. P. 19.
  16. Philipp A., Lauterborn W. Cavitation Erosion by Single Laser-produced Bubbles // J. Fluid Mech. 1998. V. 361. P. 75.
  17. Ohl C.-D., Kurz T., Geisler R., Lindau O., Lauterborn W. Bubble Dynamics, Shock Waves and Sonoluminescence // Phil. Trans. R. Soc. Lond. A. 1999. V. 357. P. 269.
  18. Bourne N.K., Milne A.M. The Temperature of a Shock-collapsed Cavity // Proc. R. Soc. Lond. A. 2003. V. 459. P. 1851.
  19. Johnsen E., Colonius T. Shock-induced Collapse of a Gas Bubble in Shockwave Lithotripsy // J. Acoust. Soc. Am. 2008. V. 124. P. 2011.
  20. Cao S., Wang G., Coutier-Delgosha O., Wang K. Shock-induced Bubble Collapse Near Solid Materials: Effect of Acoustic Impedance // J. Fluid Mech. 2021. V. 907. A 17.
  21. Aganin I.A., Davletshin A.I. Dynamics of Interacting Bubbles Located in the Center and Vertices of Regular Polyhedra // J. Phys.: Conf. Ser. 2020. V. 1588. 012001.
  22. Нигматулин Р.И., Болотнова Р.Х. Широкодиапазонное уравнение состояния воды и пара. Упрощенная форма // ТВТ. 2011. Т. 49. № 2. С. 310.
  23. Аганин А.А., Ильгамов М.А., Халитова Т.Ф. Моделирование сильного сжатия газовой полости в жидкости // Матем. моделирование. 2008. Т. 20. № 4. С. 89.
  24. Годунов С.К., Забродин А.В., Иванов М.Я., Крайко А.Н., Прокопов Г.П. Численное решение многомерных задач газовой динамики. М.: Наука, 1976. 400 с.
  25. Fujikawa S., Akamatsu T. Effects of the Non-equilibrium Condensation of Vapour on the Pressure Wave Produced by the Collapse of a Bubble in a Liquid // J. Fluid Mech. 1980. V. 97. P. 481.
  26. Десятов А.В., Ильмов Д.Н., Кубышкин А.П., Черкасов С.Г. Математическое моделирование эволюции одиночного сферического парового пузырька на основе гомобарической модели // ТВТ. 2011. Т. 49. № 3. С. 436.
  27. Wu C.C., Roberts P.H. A Model of Sonoluminescence // Proc. R. Soc. Lond. A. 1994. V. 445. P. 323.
  28. Nigmatulin R.I., Akhatov I.Sh., Topolnikov A.S., Bolotnova R.Kh., Vakhitova N.K., Lahey Jr., Taleyarkhan R.P. The Theory of Supercompression of Vapor Bubbles and Nano-Scale Thermonuclear Fusion // Phys. Fluids. 2005. V. 17. P. 107106.
  29. Rayleigh L. On the Pressure Developed in a Liquid on a Collapse of a Spherical Cavity // Phylos. Mag. 1917. V. 34. № 200. P. 94.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (32KB)
3.

Baixar (96KB)
4.

Baixar (52KB)
5.

Baixar (83KB)
6.

Baixar (105KB)
7.

Baixar (74KB)

Declaração de direitos autorais © А.А. Аганин, Н.А. Хисматуллина, Р.И. Нигматулин, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies