The Process of Heat Transfer in a Coal Bed with Variation Thermophysical Properties

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

New experimental thermodynamically consistent data are presented on the temperature dependence of thermal diffusivity, heat capacity, and thermal conductivity (λ = aρCp) of black coal calculated on their basis. The effect of the thermal decomposition (pyrolysis) of coal near 700 K and evaporation of moisture and other easily volatile components of coal at 380 K on the behavior of heat capacity and thermal conductivity was studied experimentally. The measurements were carried out using the contact-free laser flash (Netzsch LFA 457) method in the temperature range 301–823 K. Based on the measured values of the thermal diffusivity of black coal, the heat transfer process in a coal bed was studied. It is shown that taking into account the temperature dependence of the thermal diffusivity of the medium when solving the heat transfer equation significantly affects the temperature distribution in the coal bed.

Sobre autores

I. Abdulagatov

Institute of Geothermal and Renewable Energy Problems—Branch of Joint Institute for High Temperatures, Russian Academy of Sciences; Dagestan State University

Email: ilmutdina@gmail.com
Makhachkala, Russia; Makhachkala, Russia

A. Ramazanova

Institute of Geothermal and Renewable Energy Problems—Branch of Joint Institute for High Temperatures, Russian Academy of Sciences

Autor responsável pela correspondência
Email: ilmutdina@gmail.com
Makhachkala, Russia

Bibliografia

  1. Hofmeister A.M. Thermal Diffusivity of Garnets at High Temperature // Phys. Chem. Miner. 2006. V. 33. P. 45.
  2. Hofmeister A.M. Inference of High Thermal Transport in the Lower Mantle from Laser-flash Experiments and the Damped Harmonic Oscillator Model // Phys. Earth Planet. Inter. 2008. V. 170. P. 201.
  3. Zhang L. Potential Assessment of CO2 Injection for Heat Mining and Geological Storage in Geothermal Reservoirs of China // Appl. Energy. 2014. V. 122. P. 237.
  4. Holt J.B. Thermal Diffusivity of Olivine // Earth Planet. Sci. 1975. V. 27. P. 404.
  5. Buttner R., Zimanowski B., Blumm J., Hagemann L. Thermal Conductivity of a Volcanic Rock Material (Olivine–Melilitite) in the Temperature Range between 288 and 1470 K // J. Volcanol. Geotherm. Res. 1998. V. 80. P. 293.
  6. Degiovanni A., Andre S., Maillet D. Phonic Conductivity Measurement of a Semi-transparent Material // Thermal Conductivity. Ed. Tong T.W. Lancaster, PN: Technomic, 1994. V. 22. P. 623.
  7. Popov Y.A., Pribnow D., Sass J.H., Williams C.F., Burkhardt H. Characterization of Rock Thermal Conductivity by High-resolution Optical Scanning // Geothermics. 1999. V. 28. P. 253.
  8. Pertermann M., Whittington A.G., Hofmeister A.M., Spera F.J., Zayak J. Transport Properties of Low-sanidine Single-crystals, Glasses and Melts at High Temperature // Contrib. Mineral. Petrol. 2008. V. 155. P. 689.
  9. Abdulagatov I.M., Abdulagatova Z.Z., Grigor’ev B.A., Kallaev S.N., Omarov Z.M., Bakmaev A.G., Ramazanova A.E., Rabadanov K.M. Thermal Diffusivity, Heat Capacity, and Thermal Conductivity of Oil Reservoir Rock at High Temperatures // Int. J. Thermophys. 2021. V. 42. P. 135.
  10. Abdulagatov I.M., Abdulagatova Z.Z., Kallaev S.N., Bakmaev A.G., Ranjith P.G. Thermal-diffusivity and Heat-Capacity Measurements of Sandstone at High Temperatures Using Laser-Flash and DSC Methods // Int. J. Thermophys. 2015. V. 36. P. 658.
  11. Abdulagatova Z.Z., Kallaev S.N., Omarov Z.M., Bakmaev A.G., Grigor’ev B.A., Abdulagatov I.M. Temperature Effect on Thermal-Diffusivity and Heat-Capacity and Derived Values of Thermal-conductivity of Reservoir Rock Materials // Geomechanics and Geophysics for Geo-Energy and Geo-Resources. 2020. V. 6. P. 8.
  12. Abdulagatov I.M., Abdulagatova Z.Z., Kallaev S.N., Bakmaev A.G., Omarov Z.M. Heat Capacity and Thermal Diffusivity of Heavy Oil Saturated Rock Materials at High Temperatures // J. Therm. Anal. Calorim. 2020. V. 142 (1). P. 519.
  13. Min S., Blumm J., Lindemann A. A New Laser-Flash System for Measurement of the Thermophysical Properties // Thermochim. Acta. 2007. V. 455. P. 46.
  14. Vozar V., Hohenauer W. Uncertainty of Thermal Diffusivity Measurements Using the Laser-flash Method // Int. J. Thermophys. 2005. V. 26. P. 1899.
  15. ASTM E1461-13 Standard Test Method for Thermal Diffusivity by the Flash Method, 2013.
  16. ISO 22007-4:2008. Plastics-determination of Thermal Conductivity and Thermal Diffusivity. Part 4: Laser Flash Method, 2008.
  17. Cowan R.D. Pulse Method of Measuring Thermal Diffusivity at High Temperatures // J. Appl. Phys. 1963. V. 34. P. 926.
  18. Mehling H., Hautzinger G., Nilsson O., Fricke J., Hofmann R., Hahn O. Thermal Diffusivity of Semitransparent Materials Determined by the Laser-flash Method Applying a New Analytical Model // Int. J. Thermophys. 1998. V. 19. P. 941.
  19. Abdulagatov I.M., Abdulagatova Z.Z., Kallaev S.N., Bakmaev A.G., Omarov Z.M., Ranjith P.G. Heat-capacity Measurements of Sandstone at High Temperatures // J. Zhao (Australia). 2016. P. 493.
  20. Абдулагатов И.М., Григорьев Б.А., Абдулагатова З.З., Каллаев С.Н., Бакмаев А.Г., Омаров З.М. Температуропроводность, теплоемкость и теплопроводность резервуарных пород // Вести газовой науки. Актуальные вопросы исследований пластовых систем месторождений углеводородов. М.: ВНИИГАЗ, 2021. № 1(46). С. 129.
  21. Абдулагатов И.М., Григорьев Б.А., Абдулагатова З.З., Каллаев С.Н., Бакмаев А.Г., Омаров З.М. Экспериментальное исследование тепловых свойств (теплопроводности, температуропроводности, теплоемкости) естественных резервуарных пород, насыщенных тяжелой нефтью // Вести газовой науки. Актуальные вопросы исследований пластовых систем месторождений углеводородов. М.: ВНИИГАЗ, 2022. № 4(49). С. 75.
  22. Gu Y.-Q. Thermophysical Properties of Chinese Coals // Science in China (Ser. A). 1991. V. 34. P. 201.
  23. Gosset D., Guillois O., Papoular R. Thermal Diffusivity of Compacted Coal // Carbon. 1996. V. 34. P. 369.
  24. Il’chenko K.D., Revenko M.B. Thermophysical Properties of Ukraine Coals // Metallurgy Thermal Engineering. Dnepropetrovsk: NMAU, 2009. V. 1. P. 110.
  25. Wen H., Lu J.-H., Xiao Y., Deng J. Temperature Dependence of Thermal Conductivity, Diffusivity and Specific Heat Capacity for Coal and Rocks from Coalfield // Thermochim. Acta. 2015. V. 619. P. 41.
  26. Dindi H., Ba X.-H., Krantz W.B. Thermal and Electrical Property Measurements for Coal // Fuel. 1989. V. 68. P. 185.
  27. MacDonald R.A., Callanan J.E., McDermott K.M. Heat Capacity of a Medium-volatile Bituminous Premium Coal from 300 to 520 K. Comparison with a High-volatile Bituminous Nonpremium Coal // Energy & Fuels. 1987. V. 1. P. 535.
  28. Szarawa J. Heat Capacity of Coal Over a Wide Temperature Range // Termodynamika Chemiczna. Warszawa, 1969. P. 74.
  29. Tomeczek J., Palugniok H. Specific Heat Capacity and Enthalpy of Coal Pyrolysis at Elevated Temperatures // Fuel. 1996. V. 75. P. 1089.
  30. Leśniak B., Słupik Ł., Jakubina G. The Determination of the Specific Heat Capacity of Coal Based on Literature Data // Chemik. 2013. V. 67. P. 566.
  31. Schloemer S., Teschner B., Poggenburg J., Seeger Ch. Gas and Temperature Monitoring of a Spontaneous Coal Fire in Wuda Coal Mining Area // Report of Coal Fire Project Phase A. Part B: Innovative Technologies for Exploration, Extinction and Monitoring of Coal Fires in North China, 2007.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (52KB)
3.

Baixar (149KB)
4.

Baixar (305KB)
5.

Baixar (99KB)
6.

Baixar (115KB)
7.

Baixar (113KB)
8.

Baixar (93KB)

Declaração de direitos autorais © И.М. Абдулагатов, А.Э. Рамазанова, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies