Mass Spectrometric Thermodynamic Study of the Fe2O3–TiO2 System

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

High-temperature differential mass spectrometry was used to study the vaporization processes and thermodynamic properties of samples of the Fe2O3–TiO2 system containing 25, 35, and 45 mol. % iron oxide. As shown earlier, at temperatures above 1400 K, Fe2O3, losing oxygen, turns into FeO. Therefore, in this article, a mass spectrometric thermodynamic study of the FeO–TiO2 system was carried out at a temperature of 1760 K. The composition and partial pressures of vapor, as well as the values of FeO activities and excess Gibbs energy in the FeO–TiO2 system were determined. Using the Wilson polynomial made it possible for the first time to estimate the mixing enthalpy and excess entropy in the FeO–TiO2 system at 1760 K. The thermodynamic properties of melts of the FeO–TiO2 system at 1760 K were modeled using the generalized lattice theory of associated solutions, and the relative numbers of bonds of various types in the model melt lattice were calculated, indicating the preferential formation of Fe–O–Ti bonds at a FeO content of 55 mol %. It is shown that at a temperature of 1760 K, the found values of the excess Gibbs energy in the FeO–TiO2 system are evidence of negative deviations from the ideality.

About the authors

V. L. Stolyarova

Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences; St. Petersburg State University

Email: v.vorozhcov@rambler.ru
199034, St. Petersburg, Russia; 199034, St. Petersburg, Russia

S. I. Lopatin

Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences

Email: v.vorozhcov@rambler.ru
199034, St. Petersburg, Russia

V. A. Vorozhtcov

Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences

Email: v.vorozhcov@rambler.ru
199034, St. Petersburg, Russia

A. V. Fedorova

St. Petersburg State University

Email: v.vorozhcov@rambler.ru
199034, St. Petersburg, Russia

A. A. Selyutin

St. Petersburg State University

Email: v.vorozhcov@rambler.ru
199034, St. Petersburg, Russia

A. L. Shilov

Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: v.vorozhcov@rambler.ru
199034, St. Petersburg, Russia

References

  1. Fujishima A., Rao T.N., Tryk D.A. Titanium Dioxide Photocatalysis // J. Photochem. Photobiol., C. 2000. V. 1. № 1. P. 1.
  2. Mahmoodi A., Ghoranneviss M., Asgary S. Preparation and Antibacterial Activity Studies of TiO2 Nanostructured Materials // High Temp. 2019. V. 57. № 2. P. 289.
  3. Mersal M., Zedan A.F., Mohamed G.G., Hassan G.K. Fabrication of Nitrogen Doped TiO2/Fe2O3 Nanostructures for Photocatalytic Oxidation of Methanol Based Wastewater // Sci. Rep. 2023. V. 13. № 1. P. 4431.
  4. Gorbunova V.A., Sliapniova L.M. On Photocatalytic Activity of Systems of Titania/(Fe (II, III))-type in Aqueous Suspensions // Sci. Tech. 2018. V. 17. № 6. P. 521.
  5. Wilke K., Breuer H.D. The Influence of Transition Metal Doping on the Physical and Photocatalytic Properties of Titania // J. Photochem. Photobiol. A Chem. 1999. V. 121. № 1. P. 49.
  6. Sun L., Li J., Wang C.L., Li S.F., Chen H.B., Lin C.J. An Electrochemical Strategy of Doping Fe3+ into TiO2 Nanotube Array Films for Enhancement in Photocatalytic Activity // Sol. Energy Mater. Sol. Cells. 2009. V. 93. № 10. P. 1875.
  7. Казенас Е.К., Цветков Ю.В. Термодинамика испарения оксидов. М.: Изд-во ЛКИ, 2008. 480 с.
  8. Lopatin S.I., Zvereva I.A., Chislova I.V. Vaporization and Thermodynamic Properties of GdFeO3 and GdCoO3 Complex Oxides // Russ. J. Gen. Chem. 2020. V. 90. № 8. P. 1495.
  9. Gilles P.W., Carlson K.D., Franzen H.F., Wahlbeck P.G. High-temperature Vaporization and Thermodynamics of the Titanium Oxides. I. Vaporization Characteristics of the Crystalline Phases // J. Chem. Phys. 1967. V. 46. № 7. P. 2461.
  10. Gilles P.W., Franzen H.F., Duane Stone G., Wahlbeck P.G. High-temperature Vaporization and Thermodynamics of the Titanium Oxides. III. Vaporization Characteristics of the Liquid Phase // J. Chem. Phys. 1968. V. 48. № 5. P. 1938.
  11. Hampson P.J., Gilles P.W. High-temperature Vaporization and Thermodynamics of the Titanium Oxides. VII. Mass Spectrometry and Dissociation Energies of TiO(g) and TiO2(g) // J. Chem. Phys. 1971. V. 55. № 8. P. 3708.
  12. Семенов Г.А., Лопатин С.И., Кулигина Л.А. Масс-спектрометрическое изучение процессов испарения в системе на основе оксидов титана, скандия и лютеция // Вестн. СПбГУ. Сер. 4 (физика, химия). 1994. Т. 1. № 4. С. 46.
  13. Ban-ya S., Chiba A., Hikosaka A. Thermodynamics of FetO–MxOy (MxOy = CaO, SiO2, TiO2, and Al2O3) Binary Melts in Equilibrium with Solid Iron // Tetsu-to-Hagane. 1980. V. 66. № 10. P. 1484.
  14. Eriksson G., Pelton A.D. Critical Evaluation and Optimization of the Thermodynamic Properties and Phase Diagrams of the MnO–TiO2, MgO–TiO2, FeO–TiO2, Ti2O3–TiO2, Na2O–TiO2, and K2O–TiO2 Systems // Metall. Trans. B. 1993. V. 24. № 5. P. 795.
  15. Stolyarova V.L., Semenov G.A. Mass Spectrometric Study of the Vaporization of Oxide Systems / Ed. Beynon J.H. Chichester: John Wiley, 1994. 434 p.
  16. Pesl J., Hurman Eric R. High-temperature Phase Relations and Thermodynamics in the Iron–Titanium–Oxygen System // Metall. Mater. Trans. B. 1999. V. 30. № 4. P. 695.
  17. Sheindlin M., Frolov A., Petukhov S., Bottomley D., Masaki K., Manara D., Costa D. Mass Spectrometric Study of the Laser-evaporated Fe–Zr–O System up to 3300 K // J. Am. Ceram. Soc. 2022. V. 105. № 3. P. 2161.
  18. Hilpert K. High Temperature Mass Spectrometry in Materials Research // Rapid Commun. Mass Spectrom. 1991. V. 5. № 4. P. 175.
  19. Drowart J., Chatillon C., Hastie J., Bonnell D. High-temperature Mass Spectrometry: InstrumentalTechniques, Ionization Cross-sections, Pressure Measurements, and Thermodynamic Data (IUPAC Technical Report) // Pure Appl. Chem. 2005. V. 77. № 4. P. 683.
  20. Lopatin S.I., Shugurov S.M., Tyurnina Z.G., Tyurnina N.G. Ti3O5 and V2O3 Vaporization // Glass Phys. Chem. 2021. V. 47. № 1. P. 38.
  21. Lopatin S.I. Vaporization and Thermodynamic Properties of the NbO2–TiO2 System // Glass Phys. Chem. 2022. V. 48. № 2. P. 117.
  22. Гурвич Л.В., Вейц И.В., Медведев В.А., Бергман Г.А., Юнгман В.С., Хачкурузов Г.А., Иориш В.С., Дорофеева О.В., Осина Е.Л. Термодинамические свойства индивидуальных веществ. Спр. издание / Под ред. Глушко В.П. Т. IV. Кн. 2. М.: Наука, 1982. 560 с.
  23. Lias S.G., Bartmess J.E., Liebman J.F., Holmes J.L., Levin R.D., Mallard W.G. Gas-phase Ion and Neutral Thermochemistry // J. Phys. Chem. Ref. Data. 1988. V. 17. № Suppl. 1. P. 861.
  24. Paule R.C., Mandel J. Analysis of Interlaboratory Measurements on the Vapor Pressure of Cadmium and Silver // Pure Appl. Chem. 1972. V. 31. № 3. P. 395.
  25. Mann J.B. Ionization Cross Sections of the Elements Calculated from Mean-square Radii of Atomic Orbitals // J. Chem. Phys. 1967. V. 46. № 5. P. 1646.
  26. Zeifert P.L. Measurement of Vapor Pressure of Refractories. In: High Temperature Technology / Ed. Kempbell I.E. N.Y.: John Wiley, 1956. P. 485.
  27. Сидоров Л.Н., Акишин П.А. Масс-спектрометрический метод определения парциальных давлений паров и относительных сечений ионизации молекул по изотермам полного испарения // Докл. АН СССР. 1963. Т. 151. № 1. С. 136.
  28. Sidorov L.N., Shol’ts V.B. Mass Spectrometric Investigation of Two-component Systems of Complex Vapour Composition by the Isothermal Evaporation Method // Int. J. Mass Spectrom. Ion Phys. 1972. V. 8. № 5. P. 437.
  29. MacChesney J.B., Muan A. Phase Equilibria at Liquidus Temperatures in the System Iron Oxide–Titanium Oxide at Low Oxygen Pressures // Am. Mineral. 1961. V. 46. № 5–6. P. 572. https://pubs.geoscienceworld.org/msa/ammin/article-abstract/46/5-6/572/541768/Phase-equilibria-at-liquidus-temperatures-in-the
  30. Redlich O., Kister A.T. Algebraic Representation of Thermodynamic Properties and the Classification of Solutions // Ind. Eng. Chem. 1948. V. 40. № 2. P. 345.
  31. Orye R.V., Prausnitz J.M. Multicomponent Equilibria: the Wilson Equation // Ind. Eng. Chem. 1965. V. 57. № 5. P. 18.
  32. Столярова В.Л., Ворожцов В.А. Возможности метода Вильсона для расчета термодинамических свойств оксидных систем при высоких температурах // Журн. неорг. химии. 2021. Т. 66. № 9. С. 1303.
  33. Ворожцов В.А., Столярова В.Л., Кириллова С.А., Лопатин С.И. Термодинамические свойства керамики на основе оксидов гафния и редкоземельных элементов при высоких температурах // Журн. неорг. химии. 2023. Т. 68. № 2. С. 209.
  34. Wilson G.M. Vapor–Liquid Equilibrium. XI. A New Expression for the Excess Free Energy of Mixing // J. Am. Chem. Soc. 1964. V. 86. № 2. P. 127.
  35. Hildebrand J.H. Solubility. XII. Regular Solutions // J. Am. Chem. Soc. 1929. V. 51. № 1. P. 66.
  36. Hildebrand J.H. The Term ‘Regular Solution’ // Nature. 1951. V. 168. № 4281. P. 868.
  37. Дуров В.А., Агеев Е.П. Термодинамическая теория растворов. Изд. 3-е / Под ред. Крестова Г.А., Полторака О.М. М.: Книжный дом “Либроком”, 2010. 248 с.
  38. Hardy H.K. A “Sub-regular” Solution Model and Its Application to Some Binary Alloy Systems // Acta Metall. 1953. V. 1. № 2. P. 202.
  39. Vorozhtcov V.A., Stolyarova V.L., Shilov A.L., Lopatin S.I., Shugurov S.M., Karachevtsev F.N. Thermodynamics and Vaporization of the Sm2O3–ZrO2 System Studied by Knudsen Effusion Mass Spectrometry // J. Phys. Chem. Solids. 2021. V. 156. P. 110156.
  40. Barker J.A. Cooperative Orientation Effects in Solutions // J. Chem. Phys. 1952. V. 20. № 10. P. 1526.
  41. Shilov A.L., Stolyarova V.L., Vorozhtcov V.A., Lopatin S.I. Thermodynamic Description of the Gd2O3–Y2O3–HfO2 and La2O3–Y2O3–HfO2 Systems at High Temperatures // Calphad. 2019. V. 65. P. 165.
  42. Stolyarova V.L., Vorozhtcov V.A., Lopatin S.I., Selyutin A.A., Shugurov S.M., Shilov A.L., Stolyarov V.A., Almjashev V.I. Mass Spectrometric Study and Modeling of the Thermodynamic Properties of SrO–Al2O3 Melts at High Temperatures // Rapid Commun. Mass Spectrom. 2023. V. 37. № 5. P. e9459.
  43. Stolyarova V.L., Vorozhtcov V.A., Shemchuk D.V., Shilov A.L., Lopatin S.I., Almjashev V.I., Shuvaeva E.B., Kirillova S.A. High-temperature Mass Spectrometric Study of Thermodynamic Properties in the TiO2–Al2O3–SiO2 System and Modeling // Rapid Commun. Mass Spectrom. 2022. V. 36. № 19. e9359.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (172KB)
3.

Download (36KB)
4.

Download (1MB)
5.

Download (204KB)
6.

Download (134KB)
7.

Download (135KB)
8.

Download (117KB)
9.

Download (77KB)

Copyright (c) 2023 В.Л. Столярова, С.И. Лопатин, В.А. Ворожцов, А.В. Федорова, А.А. Селютин, А.Л. Шилов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies