Fabrication and Performance Study of a New Design of Passive Thermosyphon Type Solar Water Heater

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The work presents an example of a passive solar heating system, which utilizes direct solar energy to heat the water for domestic use. A passive thermosyphon heating system was designed, fabricated, and tested for its thermal performance in the semi-arid and four-season climate of the Faisalabad district of Pakistan. The heating system design was based on two-stage storage and natural thermosyphon circulation of water. An enhancement of the thermal performance of the thermosyphon systems by using a semicircular steel pot collector (covered with water carrying copper coil), two-step water storage, and side mirror reflectors was investigated. The experiments were conducted from April to July, 2014 when the ambient temperature was reported approximately between 30 to 45°C. For the cited time duration, the cold-water temperature remained in the range of 18 to 25°C. The maximum water temperature, during the intermittent flow mode operation of the system, remained between 48 and 88°C. In continuous flow mode operation, the hot water temperature remained between 46 and 78°C. Since water temperature in the range of 45 to 50°C is considered suitable for domestic use, the presented design is acceptable for domestic use.

About the authors

M. U. Farooq

State Key Laboratory of Chemical Engineering,
East China University of Science and Technology

Email: ufbajwa@yahoo.com
China

M. I. Hussain

Institute of Powder Metallurgy and Advanced Ceramics, School of Material Science
and Engineering, University of Science and Technology Beijing

Email: m.makhlouf@tu.edu.sa
China

M. Y. Naz

Department of Physics, University of Agricultur

Email: yasin306@uaf.edu.pk
Pakistan

M. M. Makhlouf

Department of Sciences and Technology, Ranyah University College, Taif University

Email: m.makhlouf@tu.edu.sa
Saudi Arabia

S. Shukrullah

Department of Physics, University of Agriculture

Email: m.makhlouf@tu.edu.sa
Pakistan

A. Ghaffar

Department of Physics, University of Agriculture

Email: m.makhlouf@tu.edu.sa
Pakistan

K. Ibrahim

College of Engineering, Muzahimiyah Branch, King Saud University

Email: m.makhlouf@tu.edu.sa
Saudi Arabia

N. M. AbdEl-Salam

Arriyadh Community College, King Saud University

Author for correspondence.
Email: m.makhlouf@tu.edu.sa
Saudi Arabia

References

  1. Ziapour B.M., Aghamiri A. Simulation of an Enhanced Integrated. Collector–Storage Solar Water Heater // Energy Conv. Manag. 2014. V. 78. P. 193.
  2. Kostić L.T., Pavlović Z.T. Optimal Position of Flat Plate Reflectors of Solar Thermal Collector // Energy Build. 2012. V. 45. P. 161.
  3. Taheri Y., Ziapour B.M., Alimardani K. Study of an Efficient Compact Solar Water Heater // Energy Conv. Manag. 2013. V. 70. P. 187.
  4. Ong K.S. A Finite-difference Method to Evaluate the Thermal Performance of a Solar Water Heater // Solar Energy. 1974. V. 16. P. 137.
  5. Kumaresan G., Sridhar R., Velraj R. Performance Studies of a Solar Parabolic Trough Collector with a Thermal Energy Storage System // Energy. 2012. V. 47. № 1. P. 395.
  6. Hobson P.A., Norton B. Verified Accurate Performance Simulation Model of Direct Thermosyphon Solar Energy Water Heaters // Solar Energy Eng. 1988. V. 110. № 4. P. 282.
  7. Huang B.J., Hsieh C.T. A Simulation Method for Solar Thermosyphon Collector // Solar Energy. 1985. V. 35. № 1. P. 31.
  8. Kalogirou S. Thermal Performance, Economic, and Environmental Life Cycle Analysis of Thermosiphon Solar Water Heaters // Solar Energy. 2009. V. 83. № 1. P. 39.
  9. Norton B., Edmonds J.E.J., Kovolos E. Dynamic Simulation of Indirect Thermosyphon Solar Energy Heaters // Renew. Energy. 1992. V. 3. P. 283.
  10. Prapas D.E., Psimmenos S., Sotiropoulos B.A. On the Beneficial Interconnection of the Thermosiphon DHW Solar Systems // Appl. Energy. 1994. V. 49. P. 47.
  11. Kalogirou S.A., Panteliou S. Thermosiphon Solar Domestic Water Heating Systems:Long-term Performance Prediction Using Artificial Neural Networks // Solar Energy. 2000. V. 69. № 2. P. 163.
  12. Zhai H., Dai Y.J., Wu J.Y., Wang R.Z., Zhang L.Y. Experimental Investigation and Analysis on a Concentrating Solar Collector Using Linear Fresnel Lens // Energy Conv. Manag. 2010. V. 51. № 1. P. 48.
  13. Tao Y.B., He Y.L., Cui F.Q., Lin C.H. Numerical Study on Coupling Phase Change Heat Transfer Performance of Solar Dish Collector // Solar Energy. 2013. V. 90. P. 84.
  14. Tanaka H. // Energy Reports. 2015. V. 1. P. 80.
  15. Hasan A. Thermosyphon Solar Water Heaters: Effect of Storage Tank Volume and Configuration on Efficiency // Energy Conv. Manag. 1997. V. 38. № 9. P. 847.
  16. Tang R., Cheng Y., Wu M., Li Z., Yu Y. Experimental and Modeling Studies on Thermosiphon Domestic Solar Water Heaters With Flat-plate Collectors at Clear Nights // Energy Conv. Manag. 2010. V. 51. № 12. P. 2548.
  17. Sakhrieh A., Al-Ghandoor A. Experimental Investigation of the Performance of Five Types of Solar Collectors // Energy Conv. Manag. 2013. V. 65. P. 715.
  18. Kumar R., Rosen M.A. Thermal Performance of Integrated Collector Storage Solar Water Heater with Corrugated Absorber Surface // Appl. Therm. Eng. 2010. V. 30. № 13. P. 1764.
  19. Kalogirou S.A. Solar Thermal Collectors and Applications // Progress Energy Comb. Sci. 2004. V. 30. № 3. P. 231.
  20. Saleh M.A., Kaseb S., El-Refaie M.F. Glass–Azimuth Modification to Reform Direct Solar Heat Gain // Building and Environment. 2004. V. 39. № 6. P. 653.
  21. Budihardjo I., Morrison G.L. Performance of Water-in-glass Evacuated Tube Solar Water Heaters // Solar Energy. 2009. V. 83. № 1. P. 49.
  22. Morrison G.L., Budihardjo I., Behnia M. Water-in-glass Evacuated Tube Solar Water Heaters // Solar Energy. 2004. V. 76. № 3. P. 135.
  23. Huang J., Pu S., Gao W., Que Y. Experimental Investigation on Thermal Performance of Thermosyphon Flat-plate Solar Water Heater With a Mantle Heat Exchanger // Energy. 2010. V. 35. № 9. P. 3563.
  24. Jaisankar S., Radhakrishnan T.K., Sheeba K.N. Experimental Studies on Heat Transfer and Friction Factor Characteristics of Forced Circulation Solar Water Heater System Fitted with Helical Twisted Tapes // Solar Energy. 2009. V. 83. № 11. P. 1943.
  25. Jaisankar S., Radhakrishnan T.K., Sheeba K.N., Suresh S. Experimental Investigation of Heat Transfer and Friction Factor Characteristics of Thermosyphon Solar Water Heater System Fitted With Spacer at the Trailing Edge of Left–Right Twisted Tapes // Energy Conv. Manag. 2009. V. 50. № 10. P. 2638.
  26. Ho C.D., Chen T.C. Collector Efficiency Improvement of Recyclic Double-pass Sheet-and-tube Solar Water Heaters with Internal Fins Attached // Renew. Energy. 2008. V. 33. № 4. P. 655.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (133KB)
3.

Download (321KB)
4.

Download (195KB)
5.

Download (149KB)
6.

Download (174KB)
7.

Download (148KB)

Copyright (c) 2023 M.U. Farooq, M.I. Hussain, M.Y. Naz, M.M. Makhlouf, S. Shukrullah, A. Ghaffar, K. Ibrahim, N.M. AbdEl-Salam

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies