УДК 532.593

ПРИМЕНЕНИЕ МОДИФИЦИРОВАННОЙ МОДЕЛИ ВАН-ДЕР-ВААЛЬСА ДЛЯ РАСЧЕТА ФАЗОВЫХ ДИАГРАММ БИНАРНЫХ СМЕСЕЙ ГЕЛИЯ, НЕОНА, ВОДОРОДА И ДЕЙТЕРИЯ

© 2024 г. А. Б. Медведев

РФЯЦ-ВНИИ экспериментальной физики, г. Саров, Россия E-mail: postmaster@ifv.vniief.ru
Поступила в редакцию 14.05.2024 г.
После доработки 21.08.2024 г.
Принята к публикации 09.07.2024 г.

На основе разработанной ранее модифицированной модели Ван-дер-Ваальса для индивидуальных веществ построены обновленные термические уравнения состояния гелия, неона, водорода и дейтерия до давлений ~200 МПа и температур ~1000 К, согласующиеся с экспериментальными данными по изотермическому сжатию с точностью ~1% по плотности (за исключением области вблизи критической точки). Их достоинством является сравнительно небольшое (пять) число свободных параметров. С применением этих уравнений на основе модифицированной модели Ван-дер-Ваальса для смесей выполнено описание фазовых диаграмм бинарных смесей гелия, неона, водорода и дейтерия друг с другом и некоторыми другими веществами (аргон, метан, двуокись водорода и др.). При использовании одного дополнительного параметра достигнуто удовлетворительное согласие с экспериментом по фазовому равновесию жидкость—газ для большинства названных смесей до давлений ~200 МПа. Разработанный подход может быть использован для описания фазовых диаграмм, отличных от рассмотренных бинарных смесей.

DOI: 10.31857/S0040364424050069

ВВЕДЕНИЕ

Представляют значительный интерес экспериментальное изучение и теоретическое моделирование термодинамических свойств и фазовых диаграмм (испарение и другие фазовые переходы) жидких и газообразных бинарных и многокомпонентных смесей. Фазовые переходы в этом случае являются неконгруэнтными (концентрация компонентов сосуществующих фаз различна). Расчетному моделированию таких систем уделяется большое внимание [1-10] и др. Его основу составляет модельное уравнение состояния (УРС) смеси, которое опирается на УРС компонентов. В большинстве случаев эти УРС представляются полуэмпирическими (содержат свободные, подгоночные под эксперимент параметры). Их достоинствами являются адекватность имеющимся экспериментальным данным, простота и малопараметричность.

Настоящая работа посвящена моделированию экспериментальных диаграмм равновесия жидкость—газ (жидкость—пар, РЖП) в бинарных смесях, в состав которых входят He, Ne, H_2 , D_2 . Рассматриваются смеси этих легких веществ

между собой и с некоторыми другими тяжелыми веществами: Ar, CH_4 , CO_2 и др. Для этих смесей имеются экспериментальные данные РЖП в виде зависимостей P-T-x (P- давление, T- температура, x- концентрация в фазе одного из компонентов смеси). При рассматриваемых далее (P, T)-условиях в некоторых из них, кроме РЖП, имеется также равновесие жидкость—жидкость (РЖЖ).

Наиболее адекватное описание экспериментальных P-T-x-зависимостей для смесей He с рядом тяжелых веществ (Аг, СН₄ и др.) было достигнуто в [11], для смесей Не, Ne, H₂, D₂ друг с другом – в [12, 13]. В [11] при моделировании применялось УРС Пенга-Робинсона (ПР) [14], в [12] использовались модификации УРС ПР и УРС Соава-Редлиха-Квонга (СРК) [15]. Уравнения ПР и СРК относятся к виду так называемых кубических УРС, основой которых является уравнение Ван-дер-Ваальса (ВдВ) [16]. Из-за своей относительной простоты и малого количества (единицы) свободных параметров кубические уравнения широко применяются при модельном описании термодинамических свойств и фазовых диаграмм атомарных и молекулярных веществ и их смесей [16]. Аналогично исходному УРС ВдВ полное давление P в этих УРС является суммой давления отталкивания P^{rep} (≥ 0), связанного с кинетическим движением частиц, и давления притяжения P^{att} (≤ 0), обусловленного действием сил межчастичного притяжения. В первом слагаемом, линейно зависящем от T, присутствует присоединенный объем b = const, который отражает размер (неточечность) частиц. При моделировании с помощью кубических УРС определенной бинарной смеси, кроме УРС компонентов, привлекается, как правило (за некоторыми исключениями), один дополнительный параметр притяжения k_{12} , входящий в выражение P^{att} смеси.

Описание смесей в [11, 12] проводилось с учетом следующего обстоятельства. При относительно низких температурах, в частности в области испарения, свойства Не, Ne, H2, D2 с помощью стандартных кубических УРС ПР и СРК в их исходном, немодифицированном варианте [14, 15], описываются хуже, чем свойства других веществ [12]. Это приводит, в частности, к неточному описанию на основе таких УРС экспериментальных P-T-x-зависимостей смесей, содержащих Н, [15], некорректному их воспроизведению для смеси He + Ne [17] и др. Данная особенность объясняется влиянием квантовых эффектов на свойства этих легких веществ при низких температурах (в частности, на положение их линий испарения) [11–13]. Поэтому для лучшего описания диаграмм смесей, содержащих He, Ne, H_2 , D_2 , в [11, 12] в стандартную процедуру определения параметров УРС ПР и СРК, применяемую для тяжелых жидкостей и газов (например, для Ar, CH_4 , CO_2), была внесена коррекция.

В [11] хорошее описание экспериментальных P-T-x-зависимостей с помощью УРС ПР получено путем использования в УРС ПР для Не свободных параметров, подобранных исходя из значений $T_C=11.73~{\rm K},\,P_C=0.568~{\rm M}\Pi {\rm a}$ в критической точке перехода жидкость—газ. Они значительно больше реальных 5.195 K, 0.2275 МПа. При моделировании смесей, кроме УРС компонентов, в [11] использовался коэффициент k_{12} . Описание диаграмм в этой работе ограничено $P\approx 20~{\rm M}\Pi {\rm a}$.

В [12] согласие с экспериментальными данными P-T-x достигнуто благодаря применению построенных в той же работе УРС Не, Ne, H_2 , D_2 в формах ПР и СРК, которые описывают их свойства при низких T. Последнее реализовано посредством введения в выражение для давления P^{rep} спадающей зависимости b от T (так в [12] отражено уменьшение роли квантового отталкивания частиц с увеличением T) и внесением изменения в стандартное выражение для P^{att} .

Обе коррекции содержат эмпирические параметры. При описании смесей в [12] использовался коэффициент k_{12} , для смеси $\mathrm{He} + \mathrm{H_2} - \mathrm{также}$ дополнительный параметр присоединенного объема l_{12} . Применяемые в данной работе УРС индивидуальных и смесевых веществ ограничены $P \approx 20 \ \mathrm{M\Pia}$.

Кубические УРС ВдВ, ПР и др. имеют следующий недостаток. Вдоль произвольной изотермы, в частности с низким значением T, при увеличении P объем V реальной жидкости уменьшается ($V \to 0$ при $P \to \infty$). Кубические УРС при b = const не отражают этого, поскольку, согласно этим уравнениям, жидкость при любой температуре может быть сжата только до объема V = b (или до плотности $\rho = 1/b$). Их низкотемпературные $(T \rightarrow 0)$ изотермы в P-Vкоординатах практически вертикальны вблизи значения V = b. В результате широкая область состояний с объемом $V \le b$ (область «сжатия» ρ > 1/b) этими УРС не описывается. Введение зависимости b(T) [12] не устраняет этого недостатка. Причем он может проявляться уже при сравнительно малых Р. В частности, использованные в [11, 12] УРС ПР для Не и H_2 в диапазоне P = 50-100 MПа при T < 100 K являются излишне «жесткими», воспроизводя экспериментальные данные по изотермическому сжатию этих веществ со значительной (~10%) погрешностью по плотности (рис. 1а, 1в). При более высоких P различие еще больше. То же несоответствие переносится на смеси.

Введение в кубические УРС зависимости b(T) приводит к нефизическому (отрицательность) поведению изохорической C_{ν} и изобарической C_{ρ} теплоемкости при высоких давлениях [18, 19]. В УРС ПР [12] для Не и H_2 на изотермах T=20-50 К это проявляется при давлениях в несколько десятков МПа (см. рис. 7 в [12]).

Преодоление недостатков кубических УРС при сохранении их достоинств требует привлечения других модификаций модели ВдВ.

В [13] моделирование бинарных смесей He, Ne, H₂, D₂ друг с другом выполнялось методом Монте-Карло с применением потенциала межчастичного взаимодействия в форме Ми с квантовой коррекцией Фейнмана—Гиббса первого (вариант Ми—ФГ1) и второго (вариант Ми—ФГ2) порядков. При этом использовались подгоночные параметры k_{12} и l_{12} , ответственные за притяжение и отталкивание между частицами 1 и 2 (в [13] для всех рассматриваемых, кроме двух, смесей $l_{12} = 0$). Используемые при расчетах свободные параметры потенциала компонентов были подобраны в [20] по термодинамическим экспериментальным данным для He, Ne, H₂, D₂ (в [20] сравнение с экспериментом выпол-

нено до $P \approx 15$ МПа; более высокие P не рассмотрены). Наряду с расчетом диаграмм в P-T-x-координатах, в [13] приводятся также результаты расчетов плотности ρ сосуществующих фаз вдоль линий равновесия ($P-T-\rho$ -диаграмма). Качество описания экспериментальных P-T-x-диаграмм смесей He, Ne, H₂, D₂ между собой в подходе [13] близко к достигнутому в [12] с помощью УРС ПР с зависимостью b(T). Расчеты в [13] значительно сложнее, чем в [12].

В [21] предложена сравнительно простая модификация модели ВдВ (далее — модель мВдВ), расширяющая ее применимость в область $\rho > 1/b$. В ней $C_V > 0$. В рассматриваемом далее варианте УРС мВдВ для индивидуального вещества содержит пять свободных параметров (в УРС ПР с зависимостью b(T) [12] их семь). Модель мВдВ допускает обобщение для смесей [22—24]. Основной целью настоящей работы является применение модели мВдВ для описания сжимаемости Не, Ne, H₂, D₂ и фазовых диаграмм бинарных смесей на их основе. Ранее эта модель использовалась для расчета P-T-x-зависимостей бинарных смесей H₂ с Ar, N₂, CH₄ и O₂ [25]. Подход мВдВ так же, как и основанный на кубических УРС, проще метода [13].

МОДЕЛЬНОЕ УРС мВдВ

Термическое УРС ВдВ для 1 моля индивидуального (простого) вещества имеет вид

$$P = \frac{N_{\rm A}kT}{V - V_{\rm C}} - a\left(\frac{N_{\rm A}}{V}\right)^2,\tag{1}$$

где $N_{\rm A}$ — число Авогадро, k — постоянная Больцмана ($N_{\rm A}k=R=8.3145\times 10^{-3}$ кДж/моль — универсальная газовая постоянная), V — мольный объем, $V_{\rm C}=b={\rm const}$ — мольный присоединенный объем («собственный» объем частиц, коволюм), $a={\rm const}$ — параметр притяжения.

Уравнение (1) можно записать в форме следующих двух уравнений:

$$P^{\text{rep}} = P^{\text{rep}} + P^{\text{att}}(V), \tag{2}$$

$$P^{\text{rep}} = \frac{N_{\text{A}}kT}{V - V_{C}}.$$
 (3)

В общем случае в (2) функция $P^{\text{att}}(V)$ может отличаться от зависимости

$$P^{\text{att}} = -a \left(\frac{N_{\text{A}}}{V}\right)^2,\tag{4}$$

присутствующей в исходном УРС ВдВ (1).

В модели мВдВ считается, что в (3) $V_C = V_C(P^{\text{rep}})$. Эта функция эмпирическая (задается). По предположению она монотонно убывает с увеличением давления P^{rep} , которое изменяется в диапазоне от 0 до $+\infty$ (малые значения P^{rep})

отвечают разреженному газу, большие — плотной жидкости). Уравнения (2), (3) можно представить в виде

$$P = P^{\text{rep}} + P^{\text{att}}(V, T), \tag{5}$$

$$V = V_C(P^{\text{rep}}) + \frac{N_A kT}{P^{\text{rep}}},$$
 (6)

где в давление P^{att} введена дополнительная зависимость от T. Далее полагается, что

$$P^{\text{att}} = -a(T) \left(\frac{N_{\text{A}}}{V}\right)^2,\tag{7}$$

a(T) > 0 — ограниченная функция.

Относительно использования в (1) (и (2), (3)) зависимости $V_{\mathcal{C}}(P^{\text{rep}})$ можно отметить следующее. Отталкивание частиц в жидкости и газе часто описывается на основе модели твердых сфер диаметра d. В этом случае в УРС ВдВ (1) присоединенный объем в расчете на одну частицу равен

диненный объем в расчете на одну частицу равен учетверенному объему шарика
$$-\frac{V_C}{N_A} = \frac{2\pi d^3}{3}$$
 [26].

В [26] вычислено давление, испытываемое определенным шариком при столкновениях с другими для разреженного (парные столкновения) газа ВдВ. Оно равно величине P^{rep} , определяемой (3). Это является указанием к введению зависимости d от P^{rep} и, соответственно, применению в (1) (и (2), (3)) зависимости $V_C(P^{\text{rep}})$. Последнее реализовано в УРС мВдВ (5), (6).

Наиболее удобными переменными УРС (5), (6) являются P^{rep} , T. При заданных эмпирических функциях P^{att} (V, T) и $V_C(P^{\text{rep}})$ сначала по ним из (6) находится V, после чего из (5) — P. В результате определяется термическая P—V—T-связь.

В общем случае в формулах (5), (6) возможен [22—24] учет зависимости V_C не только от P^{rep} , но также от T. Далее она не рассматривается.

Согласно (6), $V = V_C(P^{\text{rep}})$ при T = 0. Отсюда следует, что при T = 0 выполняется равенство $P^{\text{rep}} = P^{\text{rep}}(V_C) = P^{\text{rep}}(V)$, где $P^{\text{rep}}(V_C) - \Phi$ ункция, обратная исходной функции $V_C(P^{\text{rep}})$. Его использование в (5) дает уравнение для «холодного» (T = 0) давления P_{cold}

$$P_{\text{cold}}(V) = P^{\text{rep}}(V) + P^{\text{att}}(V, T=0).$$
 (8)

Форма этой зависимости (и других низкотемпературных изотерм УРС (5), (6)) определяется видом эмпирических функций $P^{\rm att}(V,T)$ и $V_C(P^{\rm rep})$ (или обратной для $V_C(P^{\rm rep})$ зависимости $P^{\rm rep}(V_C)$) в (5), (6). При соответствующем выборе этих функций с помощью УРС (5), (6) возможно описание сжатия (P-V-изотерм) жидкости при низких T. В этом состоит основное отличие этого УРС от УРС ВдВ (1) и других кубических УРС, у которых низкотемпературные изотермы являются вертикальными линиями вблизи V=b.

Таким образом, модель мВдВ (5), (6) применима в области сжатия жидкости $\rho > 1/b$. Конкретный вид используемого здесь выражения для $P_{\text{cold}}(8)$ приводится далее.

В случае $V_C(P^{\text{rep}}) = \text{const} = b$ и P^{att} в форме (4)

УРС (5), (6) принимает вид УРС (1). В пределе $V \to \infty$ модель ВдВ (1) переходит в УРС идеального газа (ИГ) $P = \frac{N_A kT}{V}$. То же реа-

лизуется в модели мВдВ (5), (6). Это можно получить, зафиксировав в (6) P^{rep} (и зафиксировав $V_{C}(P^{\text{rep}})$) и устремив $T \kappa \infty$. В этом пределе уравнение (6) имеет вид

$$V = \frac{N_{\rm A}kT}{P^{\rm rep}} \to \infty.$$

При этом в (5) $P^{\rm att} o 0$ (так как в формуле для P^{att} (7) величина a(T) ограничена) и уравнение (5) принимает вид $P = P^{\text{rep}}$. С учетом этого полученное из (6) предельное уравнение $V = N_{\rm A} kT/P^{\rm rep}$ есть уравнение ИГ $V = N_{\rm A} kT/P$. Этот переход можно также получить, положив в (5), (6) $T = \text{const}, P^{\text{rep}} \rightarrow 0$.

Подобно модели ВдВ (1), модель мВдВ (5), (6) отражает испарение жидкости благодаря немонотонному поведению подкритических изотерм. Приводимые далее расчетные линии испарения для рассматриваемых индивидуальных веществ определялись с помощью правила площадей Максвелла. Значения критической температуры T_C , давления P_C и плотности ρ_C находились из условий $(\partial P/\partial V)_T = (\partial^2 P/\partial V^2)_T = 0$.

Обобщение термического УРС (5), (6) на случай бинарной смеси имеет вид [25]

$$P = P^{\text{rep}} + P^{\text{att}}(V, T, N_1, N_2),$$
 (9)

$$V = V_C(P^{\text{rep}}, N_1, N_2) + (N_1 + N_2)kT/P^{\text{rep}}, (10)$$

где N_1 и N_2 — количество частиц компонентов 1 и 2 в одном моле вещества ($N_1+N_2=N_{\rm A}={\rm const}$). Далее, подобно [24, 25], притяжение в (9)

определялось следующим выражением ВдВтипа:

$$P^{\text{att}} = -a_{12}(T, N_1, N_2)(N_A/V)^2, \tag{11}$$

$$a_{12}(T, N_1, N_2) =$$

$$= \left[x^2 a_1^{1/2} a_1^{1/2} + 2(1 - k_{12}) x (1 - x) a_1^{1/2} a_2^{1/2} + (12) \right]$$

$$+(1-x)^2a_2^{1/2}a_2^{1/2}$$
,

где $x = N_1/N_A$ — концентрация (мольная доля) первого компонента. В (12) $a_1 = a_1(T) = a_{12}(T, x = 1)$, $a_2=a_2(T)=a_{12}(T,\,x=0)$. Функции $a_1(T),\,a_2(T)$ определяют притяжение $P^{\rm att}$ (7) индивидуального компонента 1 или 2 (второй компонент в смеси при этом отсутствует). Для них используется выражение

$$a(T) = A \left(\frac{M}{N_{\rm A} \rho_0}\right)^2 \eta(T), \tag{13}$$

$$\eta(T) = (\gamma \exp(-\lambda T) + 1)/(\gamma + 1), \tag{14}$$

где A > 0, $\rho_0 > 0$, γ , $\lambda \ge 0$ — эмпирические константы; M — молекулярная масса компонента. В формуле (12) $k_{12} = \text{const} - \text{эмпирический параметр}$ бинарного взаимодействия.

Входящий в (10) присоединенный объем смеси, как и в [24, 25], считается аддитивным по отношению к присоединенным объемам компонентов 1 и 2 и определяется выражением

$$V_C(P^{\text{rep}}, N_1, N_2) =$$

$$= xV_{C,1}(P^{\text{rep}}) + (1 - x)V_{C,2}(P^{\text{rep}}), \qquad (15)$$

где $V_{C,i}$ — мольный присоединенный объем i-го

В случае $V_{C,i}$ = const уравнения (9), (10), (15) после исключения из них P^{rep} принимают вид УРС ВдВ для бинарной смеси

$$P = RT/[V - xV_{C,1} - (1 - x)V_{C,2}] - a_{1,2}(T, x)(N_{\Delta}/V)^{2}.$$

Наиболее удобными переменными УРС (9), (10), (15) при заданном значении состава смеси x(или N_1 , N_2) являются P^{rep} и T. При проведении расчетов стачала по ним по (10) находится V, после чего из (9) - P. Таким образом, определяются две зависимости $V(P^{\text{rep}}, T, x)$ и $P(P^{\text{rep}}, T, x)$, которые после исключения из них P^{rep} можно преобразовать к обычному виду, например зависимости P(V, T, x).

В настоящей работе, аналогично [22–25], присоединенные объемы компонентов 1 и 2 в (15) задавались простым выражением

$$V_C = M \left[1 - \ln \left(\frac{P^{\text{rep}}}{A} \right) / \beta \right] / \rho_0, \tag{16}$$

где $\beta > 0$ — эмпирическая константа.

Согласно (16), при $P^{\text{rep}} \to \infty$ предельное значение $V_C < 0$, что не физично. Для устранения этого функцию (16) при больших значениях P^{rep} (и больших P) следует заменить на другую, имеющую предел $V_C \to 0$ (например, на функцию $V_C \sim 1/(P^{\text{rep}})^n$ с константой n > 0). Подобная процедура, реализованная в [22—24], здесь не использовалась, так как очень большие P в данной работе не рассматриваются. В пределе $P^{\text{rep}} \rightarrow 0$ (соответствует разреженному газу) по (16) $V_C \to \infty$. Чтобы значение V_C оставалось конечным, следует использовать для представления $V_{\mathcal{C}}(P^{\text{rep}})$ выражения, отличные от (16). Например, можно сделать в (16) замену $P^{\text{rep}}/A \to (P^{\text{rep}} + y)/(A + y)$, где v = const > 0. Эти способы, несколько усложняющие расчеты, здесь и в [22-25] не привлекались.

Применение (7), (13), (14), (16) в формуле (8) приводит к следующему выражению для холодного давления отдельного (например, Не) компонента:

$$P_{\text{cold}} = A \left\{ \exp \left[\beta (1 - \overline{V} \rho_0) \right] - (1 / (\overline{V} \rho_0))^2 \right\}, \quad (17)$$

где $\overline{V}=V/M-$ объем 1 г вещества. Если в (17) значение $\overline{V}=\overline{V}_0=1/\rho_0$, то $P_{\rm cold}=0$, т.е. величина ρ_0 в (13), (16) является плотностью жидкости при $P=0,\ T=0$. Величина $B_0=-\overline{V}^2\frac{dP_{\rm cold}}{d\overline{V}}$ при $\overline{V}=\overline{V}_0$ есть модуль упругого сжатия жидкости в состоянии $P=0,\ T=0$. Величина $E_0=-\int\limits_{\overline{V}_0}^\infty P_{\rm cold}(\overline{V})d\overline{V}$ равна энергии связи жидкости.

Модель мВдВ для индивидуальных и смесевых веществ является термодинамически полной. В [22—24] дано общее выражение для свободной энергии смеси произвольного ($i \ge 2$) состава $F(V, T, \{N_i\})$ ($\{N_i\}$ — число частиц N_i в объеме V), а также следующие из него выражения для энтропии $S = -(\partial F/\partial T)_{V,\{N_i\}}$ и химического потенциала i-го компонента $\mu_i = (\partial F/\partial N_i)_{V,T,\ i\neq j}$ (символ $i\ne j$ означает, что $N_j =$ const при значении j, отличном от i). С их помощью определяется потенциал Гиббса $G(P,T,\{N_i\}) = F - TS = \sum N_i \mu_i$.

В [25] приведено выражение для G(P, T, x) бинарной смеси, отвечающее определению $P^{\rm att}$ с помощью соотношений (7), (11)—(14) и определению V_C с помощью соотношений (15), (16). Оно использовалось при расчетах фазовых диаграмм P-T-x и $P-T-\rho$ в настоящей работе.

Линия РЖП бинарной смеси в P—x-координатах при T = const, как и в [25], определялась из условий [14, 27]

$$\left(\frac{\partial G}{\partial x}\right)_{P,T,x=x_1} = \left(\frac{\partial G}{\partial x}\right)_{P,T,x=x_2} =
= \frac{G(P,T,x_2) - G(P,T,x_1)}{x_2 - x_1},$$
(18)

где x_1 и x_2 — концентрации первого компонента в фазе 1 (например, жидкость) и в фазе 2 (пар) соответственно. В интервалах $0-x_1$ и x_2-1 смесь гомогенна. В промежутке x_2-x_1 она распадается на две фазы с различными содержаниями первого (x_1 — в первой фазе, x_2 — во второй) и второго ($1-x_1$ — в первой фазе, $1-x_2$ — во второй фазе) компонентов. При определении РЖЖ использовались общие условия фазового равновесия (18).

В отличие от УРС ПР с зависимостью b(T) [12] в модели мВдВ для простого вещества (5), (6) при высоких P теплоемкость $C_V > 0$. Это видно из следующего. В рассматриваемом варианте модели мВдВ (без учета в (5), (6) зависимости V_C

от T) энтропия индивидуального вещества определяется выражением [22-24]

$$S(P^{\text{rep}}, T) = \int_{\infty}^{V} (\partial P^{\text{att}} / \partial T)_{V} dV -$$

$$-kN_{A} \ln(P^{\text{rep}}) - N_{A} \frac{d\psi(T)}{dT},$$
(19)

$$\psi = -kT \ln(T^{5/2}\sigma(T)r), \tag{20}$$

где $r = k^{5/2} \left(m / 2\pi \hbar^2\right)^{3/2}$; $m = M / N_A$ — масса частицы; \hbar — постоянная Планка; $\sigma(T)$ — внутренняя статистическая сумма индивидуальной частицы, определяемая ее электронным состоянием, а для многоатомных молекул также их колебательными и вращательными характеристиками [28]. Интеграл в (19) вычисляется при T = const. В нем значение предела интегрирования V дается формулой (6) (P^{rep} , T заданы). В пределе $V \to \infty$ (тогда $P^{\text{att}} \to 0$, $P^{\text{rep}} = P$) выражение (19) переходит в выражение для энтропии идеального газа [28]

$$S = -kN_{\rm A} \ln(P) - N_{\rm A} \frac{d\psi(T)}{dT}.$$

Если зависимость P^{att} от T отсутствует (как, например, в (4) для УРС ВдВ (1)), то формулу (19) можно записать в виде

$$S = -R \ln(P^{\text{rep}}) +$$

$$+R\ln(T^{5/2}\sigma(T)r)+R\frac{d\ln(T^{5/2}\sigma(T)r)}{d\ln T}=$$
 (21)

$$=-R \ln(P^{\text{rep}}) + 2.5R \ln(T) + S_1(T),$$

$$S_1(T) = R \ln(\sigma(T)r) + R \frac{d \ln(T^{5/2}\sigma(T)r)}{d \ln T}.$$
 (22)

Для одноатомного вещества (например, He) при отсутствии электронного возбуждения частиц в выражении (22) величина $\sigma(T) = \text{const}$, что приводит к $S_1(T) = \text{const}$ в (21). В этом случае из (21) следует

$$C_V = T \left(\frac{\partial S}{\partial T} \right)_V = 2.5R - \frac{RT}{P^{\text{rep}}} \left(\frac{\partial P^{\text{rep}}}{\partial T} \right)_V.$$
 (23)

Из (5), (6) можно получить

$$\left(\frac{\partial P^{\text{rep}}}{\partial T}\right)_{V} = \frac{RP^{\text{rep}}}{RT - (P^{\text{rep}})^{2}V_{C}'},$$

где $V_C' = \frac{dV_C}{dP^{\text{rep}}}$. Подстановка этого соотношения в (23) дает

$$C_V = 2.5R - R \frac{RT}{RT - (P^{\text{rep}})^2 V_C'}.$$
 (24)

В случае $V_C(P^{\text{rep}}) = \text{const} = b$ величина $V_C' = 0$. Тогда, согласно (24), $C_V = 1.5R$, что совпадает со

значением C_{ν} для одноатомного (без электронного возбуждения) вещества в модели ВдВ (например, [28]). В модели мВдВ (5), (6) значение $V_C'(P^{\text{rep}})$ конечно (< 0). Если в формуле (24) зафиксировать P^{rep} (и значение $V_C'(P^{\text{rep}})$, отвечающее выбранной зависимости $V_C(P^{\text{rep}})$), то, согласно (24), в пределе $T \to 0$ значение $C_V = 2.5 R$, а в пределе $T \rightarrow \infty$ (идеальный газ) $C_V = 1.5 R$. Между ними C_{ν} плавно уменьшается от 2.5R до 1.5R. Таким образом, зависимость $V_{\mathcal{C}}(P^{\text{rep}})$ в модели мВдВ для одноатомного вещества, в отличие от зависимости b(T) в кубических УРС (например, УРС ПР [12]), не приводит к $C_V \le 0$. То же относится к $C_p \ge C_V$. Если в (21) $S_1(T) \ne {\rm const.}$ то в (23), (24) присутствует дополнительное слагаемое $C_{V,1} = T \left(\frac{\partial S_1}{\partial T} \right)_V$, которое так же, как и у идеального газа, определяется внутренними свойствами частиц (поведением функции $\sigma(T)$ в (22)). Наличие в (19) зависимости P^{att} от T сказывается на поведении $C_{\scriptscriptstyle V}$ и $C_{\scriptscriptstyle P}$ в модели мВдВ

качественно так же, как в кубических УРС. Следует отметить, что в [25] формула для S бинарной смеси (уравнение (28) в [15]) приведена с ошибкой. В ней присутствует лишняя добавка $R\ln(T^{5/2})$. Она, в частности, изменяет выражение для $C_V(24)$. Это не сказывается на результатах работы [25], так как формула для S там не использовалась. Выражения для S в [22—24] — правильные.

Водород и дейтерий, присутствующие в ряде рассматриваемых в работе смесей, далее считались нормальными (n). n- H_2 и n- D_2 являются смесью орто- и пара-состояний в пропорции 3:1 и 2:1 соответственно. Отличием термических (P-V-T) УРС орто- и парамодификаций здесь пренебрегается. В этом случае выражение S для n- H_2 определяется формулой (19), в которой вместо (20) присутствует функция $\psi(T) = -kT((3/4)\ln(T^{5/2}\sigma_0(T)r) + (1/4)\ln(T^{5/2}\sigma_p(T)r)$). Для n- D_2 в аналогичной формуле для $\psi(T)$ коэффициенты равны 2/3 и 1/3.

Функции $\psi_i(T)$ компонентов входят в модельные [25] выражения для μ_i и $G = \sum_i N_i \mu_i$ бинарной смеси. При этом выполнение условий равновесия фаз (18) не зависит от вида этих функций (см. [25]), т.е. для определения фазовых ди-

аграмм P-T-x и $P-T-\rho$ нужны только термические (P-V-T) УРС мВдВ компонентов.

Для выполнения расчетов на основе описанного подхода требуется определенность для каждого компонента рассматриваемой смеси параметров A, ρ_0 , γ , λ , β , фигурирующих в (13), (16), и параметра k_{12} , в (12).

РЕЗУЛЬТАТЫ РАСЧЕТОВ

Выбранные значения параметров УРС Не, Ne, H_2 , D_2 в формулах (13), (16) даны в табл. 1. Их определение проводилось на основе описания экспериментальных характеристик этих веществ на линии равновесия жидкость-газ и данных по изотермической сжимаемости при различных температурах. Параметры в табл. 1 немного отличаются от подобранных ранее в [29]. С обновленными параметрами эксперимент описывается в среднем несколько лучше (не принципиально), чем в варианте [29]. При этом некоторые характеристики (например, значение T_C для H_2) описываются менее точно. Для остальных рассматриваемых здесь индивидуальных веществ (Аг, СН, CO_2 , N_2 , O_2) эти параметры приняты такими же, как в [29]. Можно отметить, что для He и H₂, в отличие от других веществ, значение параметра $\gamma < 0$ $(|\gamma|$ для Не больше, чем для H_{γ}). По-видимому, это является эмпирическим отражением наибольшего проявления у них неклассичности поведения.

На рис. 2 показаны экспериментальные (данные NIST [30]) и расчетные согласно построенным УРС мВдВ зависимостям температуры T(P), давления P(T) и энтальпии испарения $H_{\mathrm{vap}}(T) = T(S_{\mathrm{gas}}(T) - S_{\mathrm{liq}}(T))$ вдоль кривой испарения для He, Ne, H₂, D₂. Для Ne, H₂, D₃ расчет в целом хорошо воспроизводит эксперимент за исключением области вблизи критической точки. Менее точно описываются данные для Не, обладающего самой низкой температурой испарения и наибольшим влиянием на нее квантовых эффектов. Модельные значения T_C , P_C , ρ_{C} приведены в табл. 2. Критические параметры NIST [30] даны в табл. 3. Максимальное отклонение расчетных значений от экспериментальных ~6% для T_C , 20% для P_C и 10% для ρ_C .

На рис. 1a, 1б сопоставлены расчетные изотермы УРС мВдВ с данными NIST [30] для Не и Ne.

Таблица 1. Параметры УРС мВдВ

Вещество	M	ρ_0 , Γ/cm^3	А, МПа	γ	λ, Κ-1	β
Не	4.003	0.207	7.539485	-0.7	0.0150	7.55973
Ne	20.18	1.546	180.764	1.8	0.015	9.08240
H_2	2.016	0.0932	55.0410	-0.2	0.0024	7.18568
D_2	4.028	0.212	81.8895	2.0	0.0030	7.07415

Таблица 2. Модельные критические параметры

Вещество	T_C , K	P_{C} , МПа	$ρ_C$, $Γ/cm^3$
Не	5.080	0.259	0.06585
Ne	46.20	3.30	0.463
H_2	35.03	1.553	0.0288
D_2	40.68	2.014	0.0644

Таблица 3. Экспериментальные критические параметры [30]

Вещество	T_C , K	P_C , МПа	ρ_C , Γ/cm^3
Не	5.195	0.2275	0.0696
Ne	44.49	2.679	0.482
$\mathrm{H_2}$	33.19	1.315	0.0301
D_{2}	38.34	1.665	0.0698

На рис. 1в, 1г аналогичное сравнение выполнено с аппроксимацией экспериментальных данных с помощью эталонных многопараметрических (десятки констант) УРС H_2 [31] и D_2 [32].

Имеется хорошее согласие (~1% по р) рассматриваемого УРС мВдВ с результатами [30-32]. На рис. 1а дополнительно показаны изотермы Не, отвечающие УРС ПР [11, 12]. Согласно первому из них при T = 10-20 K расчетная плотность заметно (10%) больше экспериментальной при небольших ($10-20 \, \mathrm{M}\Pi a$) давлениях, и меньше (10%) нее при повышенных (>50 МПа) давлениях. В интервале T = 50-100 K плотность по этому УРС занижена при P > 50 МПа. УРС ПР [12] хорошо согласуется с данными по изотермическому сжатию при всех рассматриваемых на рис. 1а температурах до $P = 15 \text{ M}\Pi \text{a}$, но занижает ρ при более высоких давлениях (при T = 10 - 20 Kи $P = 100 \text{ M}\Pi \text{a}$ на 10-20%). При этом изотермы 10 и 20 К этого УРС пересекаются. Значительное занижение р, согласно УРС ПР [12], имеется также для H_2 (при T = 50 K и $P = 200 \text{ M}\Pi \text{a}$ на 13%, см. рис. 1в). УРС мВдВ лучше, чем УРС ПР [11, 12], описывает экспериментальные изотермы для Не и H_2 при высоких P и низких T (рис. 1a, 1в). При высоких T изотермы на рис. 1а, 1в

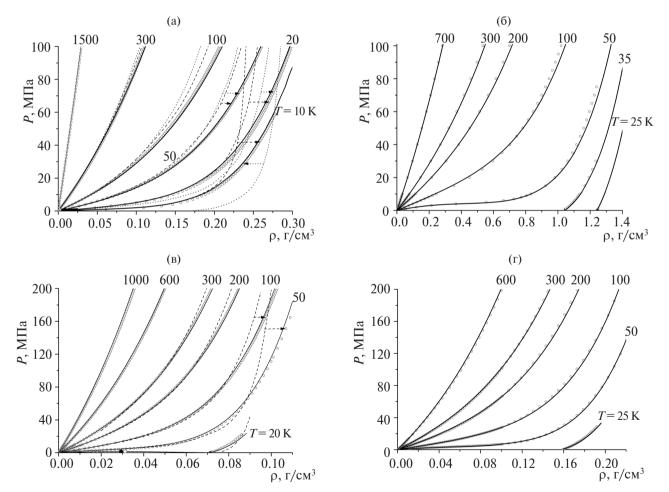


Рис. 1. Зависимости давления от плотности вдоль изотерм (указаны значения T) для He (a), Ne (б), H $_2$ (в), D $_2$ (г); светлые кружки — изотермы NIST [30] (а), (б); УРС H $_2$ [31] (в); УРС D $_2$ [32] (г); сплошные линии — изотермы УРС мВдВ; (а), (в): пунктирные линии — изотермы УРС ПР He [11], штриховые линии — [12]; горизонтальные стрелки — соответствие расчетов ПР экспериментальным изотермам.

всех рассматриваемых модельных УРС сближаются, что связано с их переходом в УРС ИГ.

Сравнение УРС мВд \overline{B} с экспериментальными данными для Ar, CH₄, CO₂, N₂, O₂ приведено в [25, 29].

Модельные подходы [12, 13] в целом хорошо согласуются с экспериментальными РЖП-диаграммами для бинарных смесей Не, Ne, H_2 , D_2 друг с другом. С учетом этого полученные здесь с применением УРС мВдВ результаты для этих смесей сопоставлены с расчетными P-T-x-зависимостями по моделям [12, 13]. Согласие с ними равносильно согласию с экспериментом. Результаты [13], полученные с применением потенциалов Ми $-\Phi$ Г1 и Ми $-\Phi$ Г2, обычно не сильно различаются между собой. Далее сравнение в основном проводится с вариантом Ми $-\Phi$ Г2.

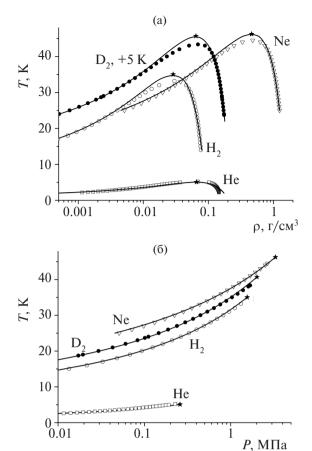
Подобранные значения параметра k_{12} в формуле (12) для бинарных смесей, состоящих из He, Ne, H₂, D₂, содержатся в табл. 4.

Таблица 4. Значения параметра k_{12}

		12	
Вещество	D_2	H_2	Не
Н,	0	_	_
He	0.33	0.33	_
Ne	0.15	0.15	0

На рис. 3-8 показаны зависимости P-T-x и $P-T-\rho$, полученные по трем рассматриваемым моделям для смесей He, Ne, H₂, D₂. На рис. 8а, 86 также приведены данные расчета методом Mu- Φ Г1 [13]. Вертикальные (или близкие к вертикали) линии на рис. 4а, 46, 5а, 5б с пометками ЖЖ отвечают фазовому равновесию ЖЖ, другие расчетные данные на рис. 3-8-PЖП. Результаты мВдВ в целом согласуются с результатами моделей [12, 13], при этом несколько лучшее соответствие имеется с [13]. Относительная близость с результатами расчета по Ми- Φ Г2 [13] наблюдается также для $P-T-\rho$ -зависимостей (рис. 36-86).

Несмотря на общее согласие, между P-T-x-зависимостями [12, 13] и мВдВ имеются некоторые качественные и количественные различия. В модели мВдВ смесь H_2+ Ne при T=34.66 К является двухфазной до x=1 (рис. 4а). Это связано с завышенным для H_2 значением $T_C=35.03$ К (табл. 2) по сравнению с экспериментальным значением $T_C=33.19$ К (табл. 3). На рис. 4а пунктирной линией показан расчет при T=34.66 К с применением УРС мВдВ для H_2 с параметрами из [29]. Этим параметрам отвечает модельное значение $T_C=33.2$ К, практически равное экспериментальному. В данном варианте на рассматриваемой изотерме T=34.66 К равновесие фаз



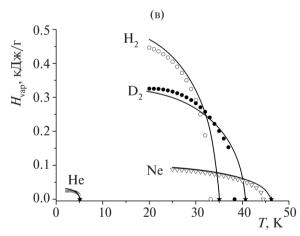


Рис. 2. Зависимости температуры от плотности (а), от давления (б) и энтальпии испарения от температуры (в) на линии равновесия жидкость—газ для Не, Ne, H_2 , D_2 : значки — данные NIST [30], сплошные линии — УРС мВдВ (звездочки — критические точки); на рис. 2а данные для D_2 сдвинуты на 5 K вверх.

заканчивается при $x \approx 0.65$ (согласуется с $x \approx 0.6$ по [12]). При этом другие P-T-x-зависимости мВдВ качественно не изменяются. Примером является показанная на рис. 4а пунктиром расчетная P-x-зависимость при T=39.57 К.

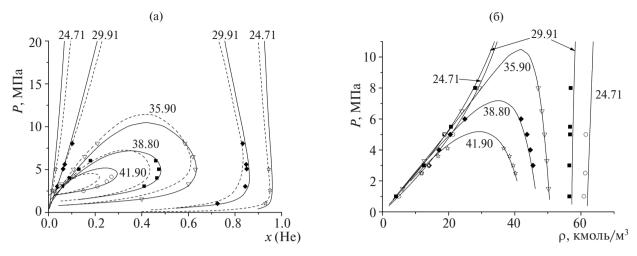


Рис. 3. Зависимости давления от концентрации He (а) и от плотности (б) при фазовом равновесии в смеси He + Ne при T = 24.71, 29.91, 35.90, 38.80, 41.90 K: значки — расчет Mu— Φ Г2 [13], штриховые линии — УРС ПР [12], сплошные линии — УРС мВдВ.

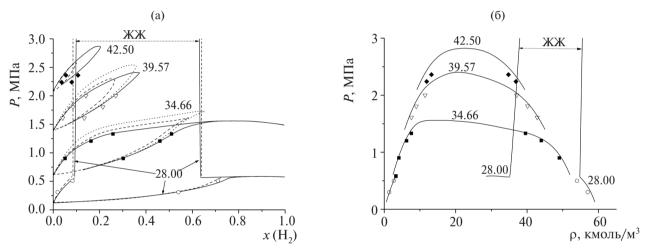


Рис. 4. Зависимости давления от концентрации H_2 (а) и от плотности (б) при фазовом равновесии в смеси H_2 + Ne при $T=28.00,\ 34.66,\ 39.57,\ 42.50\ K$: значки — расчет Ми—ФГ2 [13], штриховые линии — УРС ПР [12], сплошные линии — УРС мВдВ, пунктирные линии при T=34.66 и 39.57 К — расчет мВдВ с параметрами УРС H_2 из [29].

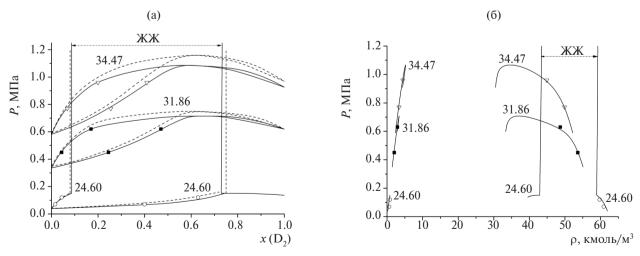


Рис. 5. Зависимости давления от концентрации D_2 (a) и от плотности (б) при фазовом равновесии в смеси D_2 + Ne при T = 24.60, 31.86, 34.47 К: значки — расчет Ми—ФГ2 [13], штриховые линии — УРС ПР [12], сплошные линии — УРС мВдВ.

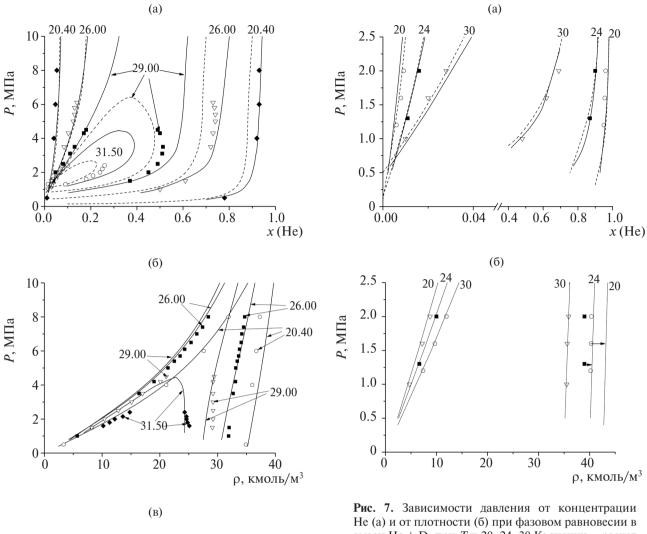


Рис. 6. Зависимости давления от концентрации He (a), (в) и от плотности (б) при фазовом равновесии в смеси He + $\rm H_2$ при T=20.40, 26.00, 29.00, 31.50 K: значки — расчет Mu— Φ Г2 [13], штриховые линии — УРС ПР [12], сплошные линии — УРС мВдВ; (в) — расчет мВдВ с уменьшенным в 1.05 раза присоединенным объемом смеси.

Рис. 7. Зависимости давления от концентрации He (а) и от плотности (б) при фазовом равновесии в смеси He + D_2 при T=20, 24, 30 K: значки – расчет Ми $-\Phi\Gamma 2$ [13], штриховые линии – УРС ПР [12], сплошные линии – УРС мВдВ.

Другое отличие заключается в значительном расхождении результатов расчета по мВдВ с результатами [12, 13] (и с экспериментом) для смеси He + H₂ при T = 29.00 и 31.50 K (рис. 6a). Понесоответствие экспериментальным данным имелось также и в исходных модельных вариантах [12, 13] при значении параметра $l_{12} = 0$. Оно было устранено путем задания ненулевого значения этого параметра для данной смеси. При этом в [12, 13] применялось значение $l_{12} \le 0$. В модели ПР это соответствует уменьшению присоединенного объема смеси Не + Н, по сравнению со стандартным (при $l_{12}=0$) вариантом, использованным в [12] при описании остальных смесей. С учетом этого смесь He + H₂ была рассмотрена в дополнительном варианте мВдВ, в котором значения ρ_0 для Не и H_2 из таблицы были увеличены в 1.05 раза, что соответ-

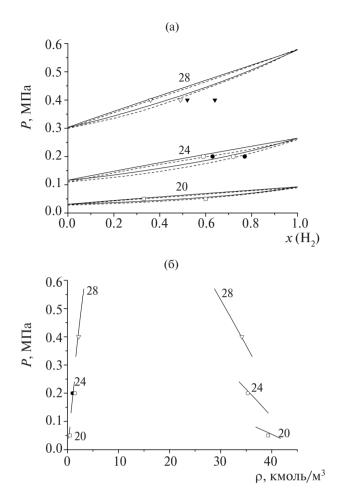


Рис. 8. Зависимости давления от концентрации H_2 (а) и от плотности (б) при фазовом равновесии в смеси $H_2 + D_2$ при T = 20, 24, 28 К: светлые значки — расчет $Mu - \Phi\Gamma 1$, темные значки — $Mu - \Phi\Gamma 2$ [13], штриховые линии — VPC ΠP [12], сплошные линии — VPC мВдВ.

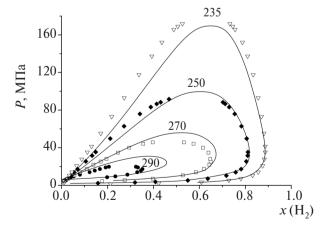
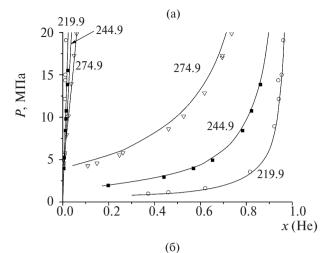
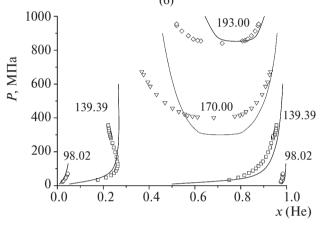


Рис. 9. Зависимости давления от концентрации H_2 при фазовом равновесии в смеси $H_2 + CO_2$ при T = 235, 250, 270, 290 K: значки — эксперимент [33], линии — УРС мВдВ.





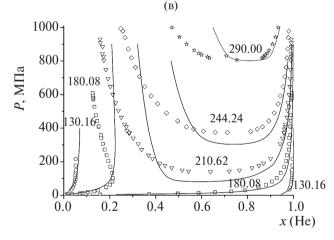


Рис. 10. Зависимости давления от концентрации Не при фазовом равновесии в смесях $\text{He} + \text{CO}_2$ (a), He + Ar (б) и $\text{He} + \text{CH}_4$ (в) при указанных значениях T: значки — эксперимент [34] (а), [35] (б), [36] (в); линии — УРС мВдВ.

ствует уменьшению (как и в УРС ПР [12]) определяемого (15) присоединенного объема смеси $He + H_2$ на 5%. Прочие модельные параметры оставлены неизменными. Результат расчета P-T-x-зависимостей для этого случая показан на рис. 6в. Согласие с расчетными данны-

ми [12, 13] при T=29.00 и 31.50 К значительно улучшилось. При этом описание моделью мВдВ данных [12, 13] при T=20.40 и 26.00 К по сравнению с представленным на рис. ба сильно не изменилось. Следует отметить неполную корректность использованного способа расчета, так как он не обеспечивает перехода определяемого формулой (15) присоединенного объема смеси $He+H_2$ в объемы He и H_2 (16), с которыми описывается эксперимент по испарению и изотермическому сжатию для этих компонентов (рис. 1, 2). Для обеспечения этого при представлении V_C смеси вместо (15) требуется использование более сложных выражений.

Можно отметить значительно более высокое расчетное значение ρ для жидкой смеси $He + D_2$ в модели мВдВ по сравнению с $Mu-\Phi\Gamma2$ при T=20 К (рис. 7б). В первой из них плотность равна 43 кмоль/м³, во второй — 40 кмоль/м³. Согласно модели $Mu-\Phi\Gamma1$ [13], в этом случае $\rho \approx 42$ кмоль/м³.

Для смеси $H_2 + D_2$ представленные на рис. 8а результаты расчета в вариантах $Mu-\Phi\Gamma 2$ и $Mu-\Phi\Gamma 1$ значительно отличаются между собой при T=24 и 28 К. Результаты расчета по мВдВ лучше согласуются с результатами по $Mu-\Phi\Gamma 1$. Соответствие с этим вариантом имеется также и для ρ (рис. 86).

Рассматриваемое УРС мВдВ применялось в [25] при расчетах P-T-x-зависимостей РЖП бинарных смесей H_2 с Ar, CH_4 , N_2 . В этих расчетах использовались параметры УРС компонентов из [29]. При значении $k_{12} = -0.07$ в (12) было достигнуто хорошее согласие результатов расчета и эксперимента для этих смесей в интервале T = 60-170 K до 100 МПа. С учетом этого с помощью данного способа в [25] была рассчитана модельная диаграмма P-T-x смеси H_2+O_2 . Изменение констант УРС мВдВ для H_2 (табл. 1) по сравнению с параметрами Н, из [29] приводит к некоторому изменению модельных диаграмм смесей H_2 с Ar, CH_4 , N_2 по сравнению с диаграммами из [25]. Возникающее несогласие с экспериментом устраняется при использовании вместо $k_{12} = -0.07$ значении $k_{12} = -0.03$. Рассчитанная с этим значением k_{12} диаграмма смеси $H_2 + O_2$ и ее диаграмма из [25] практически совпадают, т.е. выводы [25] относительно положения P-T-x-зависимостей для смеси $H_2 + O_2$ не изменяются.

В настоящей работе рассматривались также некоторые другие смеси, в том числе при более высоких $(P,\ T)$ -условиях, чем на рис. 3—8. На рис. 9 приведено описание экспериментальных данных [33—36] для смеси $H_2+\mathrm{CO}_2$ $(k_{12}=0.05)$, на рис. 10-для смесей $\mathrm{He}+\mathrm{CO}_2$ $(k_{12}=0.5)$, $\mathrm{He}+\mathrm{CH}_4$ $(k_{12}=0.75)$ и $\mathrm{He}+\mathrm{Ar}$ $(k_{12}=0.55)$.

При $P \le 200$ МПа количественное согласие с экспериментом удовлетворительное. В области более высоких давлений описание эксперимента в основном качественное. Одной из причин расхождения может быть некорректность УРС Не с присоединенным объемом в виде (16) при P > 200 MПа. Сравнение изотерм T = 75 - 300 Kиспользуемого УРС мВдВ для Не с экспериментом [37] показывает завышение (постепенно возрастающее с увеличением Р) расчетной плотности в интервале P > 200 МПа. При 200 и 1000 МПа оно составляет ~2% и ~10% соответственно. В данном случае вместо (16) для представления присоединенного объема следует использовать другие функции (например, как отмечалось выше, функцию вида $V_C \sim 1/(P^{\text{rep}})^n$ с константой n > 0). К некоторому улучшению согласия данных расчетов и экспериментов на рис. 9, 10 приводит введение в формуле (12) возрастающей зависимости $k_{12}(T)$.

ЗАКЛЮЧЕНИЕ

В работе выполнено моделирование линий испарения бинарных смесей гелия, неона, водорода и дейтерия друг с другом и некоторыми другими веществами (аргон, метан, двуокись водорода и др.) с применением модифицированной модели Ван-дер-Ваальса. Моделирование показало ее хорошую применимость до давлений ~200 МПа. Достоинствами модели является относительная простота расчетов, небольшое число параметров, способность описания, в отличие от модели ВдВ и других кубических УРС, сжатия жидкости при высоких давлениях и низких температурах.

Разработанный подход может быть использован для описания фазовых диаграмм бинарных смесей, отличных от рассмотренных в настоящей работе.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Фортов В.Е.* Экстремальные состояния вещества. М.: Физматлит, 2009. С. 303.
- 2. *Фортов В.Е.* Уравнения состояния вещества. От идеального газа до кварк-глюонной плазмы. М.: Физматлит, 2013. С. 492.
- Iosilevski I., Hyland G., Yakub E., Ronchi C. The Equation of State of UO₂ // Int. J. Thermophys. 2004. V. 22. P. 1253.
- 4. *Iosilevskiy I.*, *Gryaznov V.*, *Yakub E.*, *Ronchi C.*, *Fortov V.* Non-congruent Phase Coexistence in Strongly Coupled Chemically Reactive Plasmas // Contrib. Plasma Phys. 2003. V. 43. № 5–6. P. 316.
- 5. *Ronchi C., Iosilevskiy I., Yakub E.* Equation of State of Uranium Dioxide. Berlin: Springer, 2004. P. 366.
- 6. Иосилевский И.Л., Грязнов В.К., Семенов А.М., Якуб Е.С., Горохов Л.Н., Юнгман В.С., Баша-

- рин А.Ю., Брыкин М.В., Шейндлин М.А., Фортов В.Е., Ronchi C., Hyland G.J., Pflieger R. Исследования неконгруэнтного испарения в продуктах высокотемпературного нагрева диоксида урана // Изв. РАН. Сер. Энергетика. 2011. № 5. С. 115.
- Маевский К.К., Кинеловский С.А. Термодинамические параметры смесей с нитридом кремния при ударно-волновом воздействии в представлениях равновесной модели // ТВТ. 2018. Т. 56. № 6. С. 876.
- Богданова Ю.А., Губин С.А. Исследование версий термодинамической теории возмущений для моделирования свойств бинарных смесей флюидов в широкой области давлений и температур // ТВТ. 2022. Т. 60. № 5. С. 682.
- 9. *Беляков М.Ю.* Уравнение состояния околокритической бинарной смеси на основе гипотезы перемешивания // ТВТ. 2024. Т. 62. № 1. С. 50.
- Беляков М.Ю. Критические аномалии и фазовые диаграммы бинарной смеси // ТВТ. 2023. Т. 61. № 2. С. 198.
- 11. Rowland D., Hughes T.J., May E.F. Effective Critical Constants for Helium for Use in Equations of State for Natural Gas Mixtures // J. Chem. Eng. Data. 2017. V. 62. P. 2799.
- Aasen A., Hammer M., Lasala S., Jaubert J.-N., Wilhelmsen O. Accurate Quantum-corrected Cubic Equations of State for Helium, Neon, Hydrogen, Deuterium and Their Mixtures // Fluid Phase Equilibria. 2020. V. 524. P. 112790.
- 13. Aasen A., Hammer M., Müller E.A., Wilhelmsen O. Equation of State and Force Fields for Feynman—Hibbs-corrected Mie Fluids. II. Application to Mixtures of Helium, Neon, Hydrogen, and Deuterium // J. Chem. Phys. 2020. V. 152. 074507.
- 14. *Peng D. Y.*, *Robinson D.B.* A New Two-constant Equation of State // Ind. Eng. Chem. Fundam. 1976. V. 15. № 1. P. 59.
- 15. Soave G. Equilibrium Constants from a Modified Redlich–Kwong Equation of State // Chem. Eng. Sci. 1972. V. 27. № 6. P. 1197.
- 16. Уэйлес С. Фазовые равновесия в химической технологии. М.: Мир, 1989.
- 17. Wilhelmsen O., Berstad D., Aasen A., Neksa P., Skaugen G. Reducing the Exergy Destruction in the Cryogenic Heat Exchangers of Hydrogen Liquefaction Processes // Int. J. Hydrogen Energy. 2018. V. 43. № 10. P. 5033.
- 18. *Salim P.H.*, *Trebble M.A.* A Modified Trebble—Bishnoi Equation of State: Thermodynamic Consistency Revisited // Fluid Phase Equilib. 1991. V. 65. P. 59.
- 19. *Kalikhman V., Kost D., Polishuk I.* About the Physical Validity of Attaching the Repulsive Terms of Analytical EOS Models by Temperature Dependencies // Fluid Phase Equilib. 2010. V. 293. № 2. P. 164.
- 20. Aasen A., Hammer M., Ervik A., Müller E.A., Wilhelmsen O. Equation of State and Force Fields for Feynman—Hibbs-corrected Mie Fluids. I. Application to Pure Helium, Neon, Hydrogen, and Deuterium // J. Chem. Phys. 2019. V. 151. № 6. 064508.

- 21. *Медведев А.Б.* Модель уравнения состояния с учетом испарения, ионизации и плавления // ВАНТ. Сер. Теоретическая и прикладная физика. 1992. Вып. 1. С. 12.
- 22. *Медведев А.Б.* Уравнение состояния и коэффициенты переноса аргона на основе модифицированной модели Ван-дер-Ваальса до давлений 100 ГПа // Физика горения и взрыва. 2010. Т. 46. № 4. С. 116.
- 23. *Медведев А.Б.* Уравнение состояния диоксида кремния с учетом испарения, диссоциации и ионизации // Физика горения и взрыва. 2016. Т. 52. № 4. С. 101.
- 24. *Копышев В.П., Медведев А.Б., Хрусталев В.В.* Уравнение состояния продуктов взрыва на основе модифицированной модели Ван-дер-Ваальса // Физика горения и взрыва. 2006. Т. 42. № 1. С. 87.
- 25. *Медведев А.Б.* Определение фазовой диаграммы смеси H₂+O₂ на основе модифицированной модели Ван-дер-Ваальса // Физика горения и взрыва. 2022. Т. 58. № 1. С. 3.
- Больцман Л. Лекции по теории газов. М.: ГИТТЛ, 1956. 554 с.
- Пригожин И., Дефей Р. Химическая термодинамика. Новосибирск: Наука, Сибирское отд., 1966.
- 28. *Ландау Л.Д., Лифшиц И.М.* Статистическая физика. М.: Наука, 1964. 568 с.
- 29. *Медведев А.Б.* Оценка коэффициентов самодиффузии и взаимной диффузии бинарной смеси на основе модифицированной модели Ван-дер-Ваальса // Физика горения и взрыва. 2017. Т. 53. № 4. С. 58.
- 30. Thermophysical Properties of Fluid Systems, NIST Webbook. http://webbook.nist.gov/chemistry/fluid
- 31. *Leachman J.W., Jacobsen R.T., Penoncello S.G., Lemmon E.W.* Fundamental Equations of State for Parahydrogen, Normal Hydrogen, and Orthohydrogen // J. Phys. Chem. Ref. Data. 2009. V. 38. № 3. P. 721.
- 32. *Richardson I.A.*, *Leachman J.W.*, *Lemmon E.W.* Fundamental Equations of State for Deuterium // J. Phys. Chem. Ref. Data. 2014. V.43. № 1. P. 013103-13.
- 33. *Tsang C.Y., Street W.B.* Phase Equilibria in the H₂/CO₂ System at Temperatures from 220 to 290 K and Pressures to 172 MPa // Chem. Eng. Sci. 1981. V. 36. P. 993.
- 34. *MacKendrick R.F.*, *Heck C.K.*, *Barrick P.L.* Liquid–Vapor Equilibria of the Helium–Carbon Dioxide System // J. Chem. Eng. Data. 1968. V. 13. № 3. P. 352.
- Street W.B., Erickson A.L. Phase Equilibria in Gas Mixtures at High Pressures: Implication for Planetary Structures // Phys. Earth Planet. Interiors. 1972. V. 5. P. 357.
- Street W.B., Erickson A.L., Hill J.L.E. Phase Equilibria in Fluid Mixtures at High Pressures: the He—CH₄ System // Phys. Earth Planet. Interiors. 1972. V. 6. P. 69.
- 37. *Mills R.L.*, *Liebenberg D.H.*, *Bronson J.C.* Equation of State and Melting Properties of ⁴He from Measurements to 20 kbar // Phys. Rev. B. 1980. V. 21. № 11. P. 5137.