УДК 533.922

ОБ УСКОРЕНИИ И УДЕРЖАНИИ ИОНОВ ПОЛЕМ ВИРТУАЛЬНОГО КАТОДА В ПЛАЗМЕ НАНОСЕКУНДНОГО ВАКУУМНОГО РАЗРЯДА

© 2024 г. Ю. К. Куриленков*, И. С. Самойлов

Объединенный институт высоких температур РАН, Москва, Россия

*E-mail: yu.kurilenkov@lebedev.ru

Поступила в редакцию 27.09.2023 г.

После доработки 02.10.2024 г.

Принята к публикации 08.10.2024 г

Ранее на основе миниатюрного наносекундного вакуумного разряда малой энергии была реализована схема инерциального электростатического удержания с обратной полярностью. В эксперименте и PiC-моделировании обнаружена возможность удержания и ускорения ионов до энергий в десятки кэВ полем виртуального катода в наносекундном вакуумном разряде. Экспериментально получены как DD-нейтроны, так и α-частицы из безнейтронной реакции протон—бор. В данной работе приводятся результаты PiC-моделирования в электромагнитном коде КАРАТ процессов, приводящих к реакции протон—бор для реальной геометрии электродов, использованной в первых экспериментах по безнейтронному синтезу в одном миниатюрном устройстве на основе наносекундного вакуумного разряда. Из них следует, что общий выход α-частиц происходит в эксперименте за счет лишь разовых схождений протонов и ионов бора к оси разряда, ускоряемых в очень узкой потенциальной яме, а осцилляций ионов за время приложенного импульса напряжения практически нет. Формирование более объемной потенциальной ямы (широкой по радиусу и протяженной по оси разряда) с хорошо выраженными осцилляциями протонов и ионов бора может обеспечить заметное увеличение выхода реакции протон—бор.

DOI: 10.31857/S0040364424050023

ВВЕДЕНИЕ

Физика и техника коллективного ускорения ионов в системах с сильноточными электронными пучками и виртуальным катодом (ВК) имеет многолетнюю историю [1]. В частности, ранее была предложена модель коллективного ускорения ионов в искровой стадии вакуумного разряда на основе концепции глубокой потенциальной ямы [2]. Последняя соответствует виртуальному катоду, который при определенных условиях возникает на фронте катодного факела при его распространении в вакуумном диоде. Предложенная модель отражает основные процессы, приводящие к коллективному ускорению ионов в глубокой нестационарной потенциальной яме, и, в частности, позволяет объяснить неоднократно наблюдавшееся появление аномально быстрых ионов в вакуумных разрядах (см. [2, 3] и ссылки там же), природа которых долгое время оставалась непонятной.

Время жизни потенциальной ямы на фронте катодного факела крайне мало и обычно не пре-

вышает долей наносекунд [2]. Если каким-либо образом создать в вакуумном разряде условия для образования глубокой и квазистационарной потенциальной ямы, то это обеспечило бы определенное контролирование не только процесса ускорения ионов, но и их удержание с последующим ядерным синтезом в результате периодических встречных столкновений ионов. Оказалось, что это можно сделать, если реализовать хорошо известную схему инерциального электростатического удержания [4, 5], но с обратной полярностью [6], на основе миниатюрного наносекундного вакуумного разряда (НВР) цилиндрической геометрии [7–10]. Детальное РіС-моделирование в электромагнитном коде КАРАТ [11] выявило образование в анодном пространстве НВР виртуального катода и соответствующей ему потенциальной ямы (ПЯ) глубиной около 100 кВ. ВК образуется, когда к разряду прикладывается импульс высокого напряжения и под действием электрического поля имеет место автоматическая радиальная инжекция электронов в анодное пространство. В результате возникающая там квазистационарная потенциальная яма размером в несколько миллиметров играет роль как микроускорителя для попадающих в нее ионов, так и может удерживать осциллирующие в ней ионы до тех пор, пока к НВР приложено напряжение и в нем протекает ток. Ранее для данной схемы ускорения и удержания исследовался (численно и экспериментально) ядерный DDсинтез в НВР с однократным или пульсирующим выходом нейтронов с энергией 2.45 МэВ [7-9]. Пульсирующий режим выхода нейтронов являлся результатом осшилляции дейтронов в потенциальной яме и их периодических встречных столкновений с энергиями ≈ 50 кэВ на «дне» ПЯ вблизи оси разряда [10].

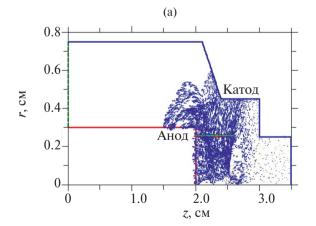
Представляет большой интерес управление ядерным «горением» и других более продвинутых топлив [12]. В частности, открытая еще в 30-х годах прошлого века [13, 14] безнейтронная ядерная реакция протон-бор (рВ) $p + {}^{11}B \rightarrow \alpha + {}^{8}Be^* \rightarrow 3\alpha + 8.7 \text{ МэВ с выходом}$ практически одних α-частиц привлекает в наше время все больший как фундаментальный, так и прикладной интерес. Помимо пока весьма заоблачных вариантов производства «чистой» энергии на ее основе [15], имеется растущая современная практическая потребность в простых и надежных источниках α-частиц для ядерной медицины, материаловедения, электроники и других междисциплинарных приложений, включая аэрокосмические [16-18]. Однако выход реакции рВ может стать заметным лишь при существенно больших энергиях частиц, чем это необходимо для реакций DT- или DD-синтеза [12]. Начиная с пионерской работы В.С. Беляева и его коллег в 2005 г. [19], реакция рВ наблюдалась лишь в экспериментах, где так или иначе имелось лазерное воздействие на борсодержащие мишени. Отметим большой прогресс, достигнутый в последние годы в изучении безнейтронного синтеза рВ в лазерной плазме, сопровождаемый существенным увеличением регистрируемого выхода α-частиц (см. обзоры в [20, 21]).

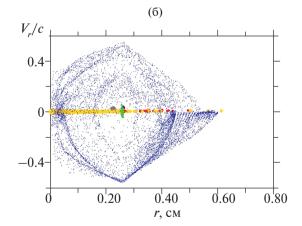
Помимо активно развиваемых схем рВ-синтеза с лазерным воздействием на мишени [21], также представляет несомненный интерес реализация безнейтронной реакции рВ в одном устройстве с удержанием плазмы без внешнего воздействия лазерных или протонных пучков на мишень с бором. В частности, недавно впервые был реализован рВ-синтез в системе с магнитным удержанием плазмы при инжекции крупинок бора и пучка быстрых нейтральных атомов водорода [22]. Несколько ранее авторами данной работы был продемонстрирован безнейтронный рВ-синтез с электродинамическим

удержанием ионов полем ВК в миниатюрном НВР с полым катодом [23] и были представлены результаты по регистрации выхода α -частиц. Экспериментам предшествовало детальное PiCмоделирование в электромагнитном коде KA-PAT [11] всех процессов, сопровождающих протекание рВ-реакции. Оно выявило, в частности, возможный осцилляторный характер удержания ионов в потенциальной яме НВР с определенной геометрией [23–25]. В процессе осцилляций ионов в ПЯ глубиной \approx 100 кВ встречные столкновения части протонов и ионов бора с энергиями \sim 100–500 кэВ могут приводить к реакции рВ и появлению α -частиц.

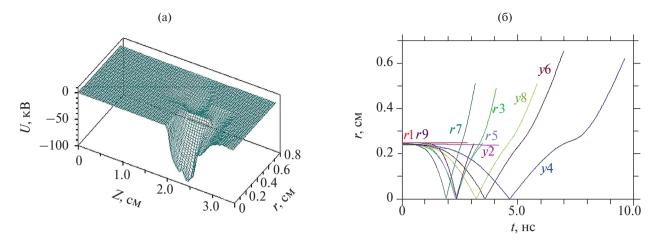
В данной работе уточняются представленные ранее результаты РіС-моделирования реакции рВ в коде КАРАТ для условий первых экспериментов [23] с миниатюрным устройством на базе НВР с полым катодом и рассматриваются особенности генерации α-частиц для реальной геометрии анод—катод, использованной в этих экспериментах.

РІС-МОДЕЛИРОВАНИЕ ПРОЦЕССОВ ЯДЕРНОГО СИНТЕЗА ПРОТОН—БОР ДЛЯ ЭКСПЕРИМЕНТАЛЬНОЙ ГЕОМЕТРИИ АНОД—КАТОД


некоторую РіС-моделирование выявило оптимальную геометрию электродов для максимального выхода α-частиц из реакции протон-бор при осцилляторном удержании плазмы в НВР [23]. Соответствующие результаты для энергии осциллирующих ионов, возникающей потенциальной ямы и выхода с-частиц (в произвольных единицах) приведены в [23]. Однако было отмечено, что пробный эксперимент по ядерному горению протон-бор был проведен не для оптимальных расчетных геометрий анодкатод (А-К). Ниже приводятся и обсуждаются результаты РіС-моделирования в коде КАРАТ электродинамических процессов, приводящих к рВ-синтезу для реальной геометрии А-К, использованной в эксперименте [23].


Отметим, что при переходе от исследования DD-синтеза [7-10] к первым экспериментам по нейтронному рВ-синтезу в НВР возникла задача доставки протонов и ионов бора в анодное пространство. Протоны (водород) могли попасть в анодные Рd-трубки, как и ранее дейтерий [7, 8], в процессе электролиза в обычной воде. Новой задачей стала доставка ионов бора в анодное пространство. В связи с этим в работе [23] использовался старый анод, состоящий из трех Pd-трубок, прикрепленных к торцу медного основания [23]. Из-за многократного использования этого анода при исследовании DD-синтеза [9], его поверхность содержала огромное количество

микрократеров и очень развитый микрорельеф в целом [23]. Именно это оказалось крайне удобным на тот момент развития эксперимента для заполнения поверхности старого Pd-анода наночастицами бора (~20 нм) в процессе катафореза. При облучении такого анода энергичными электронами, летящими с катода, в эрозионной плазме у поверхности анода, совпадающей с верхним краем ПЯ [23], могли бы оказаться как протоны, так и ионы бора.


Реальная геометрия электродов А-К, использованная в первых экспериментах по анейтронному синтезу рВ в НВР [23], показана на рис. 1а. В реальном эксперименте имеем набор анодных Pd-трубок [23], расположенных по периметру цилиндрического медного основания анода. На рис. 1а и 16 приведены те результаты 2D PiC-моделирования динамики электронов (на момент времени t = 10 нс), формирующих ВК в анодном пространстве (с расстоянием 0.15 см между цилиндрическими анодом и катодом). Здесь и далее в расчетах использована экспериментальная зависимость приложенного напряжения от времени [23]. При моделировании в коде КАРАТ с левой стороны в коаксиал вдоль оси z (рис. 1a) подается поперечная электромагнитная волна от высоковольтного генератора, что формирует электрическое поле между электродами, вызывающее эмиссию электронов с катода. Скорости электронов и других частиц, включая продукты реакции рВ, в зависимости от их положения по радиусу приведены на рис. 1б. Особенности и детали моделирования рВ-синтеза в коде КАРАТ описаны ранее в [11, 24, 25].

По сравнению с оптимальной геометрией А-К для осцилляций ионов [23] в первом эксперименте применялись очень короткие анодные Pd-трубки (рис. 1a). Длина потенциальной ямы в НВР оказывается примерно пропорциональна длине анодной трубки в [23], и для реальной анодной Pd-трубки, как видно на рис. 2a. ПЯ оказывается довольно небольшой в длину по оси z. Можно предположить, что выход α-частиц из рВ-реакции будет пропорционален объему, в котором имеет место синтез, т.е. длине и ширине потенциальной ямы. Поэтому, чем короче анодная трубка в НВР, тем меньше будет ожидаемый выход реакции. Кроме того, реальные анодные Pd-трубки (рис. 1a) смещены к оси разряда по сравнению с их положением в [23]. Это приводит к тому, что фазовый портрет (рис. 1б) отличается от аналогичного для оптимальной геометрии А–К, где виртуальный катод сформирован на расстоянии ≈ 0.1 см от оси разряда z, как в [25]. Именно в поле такого ВК имеют место хорошо выраженные осцилляции протонов и ионов бора [23, 25]. В реальной же геометрии (рис. 1) электроны окончательно тормозятся лишь почти на оси разряда ($r \approx 0$). В результате в эксперименте [23] потенциальная яма (рис. 2а) оказывается не только узкой по оси z, но и небольшой по радиусу r (при t = 5 нс ПЯ будет еще в два раза уже [26]). В том числе и поэтому РіС-моделирование положений случайно выбранных в начальный момент времени из «анодной плазмы» (зеленая область на рис. 1a) групп протонов (индекс r) и ионов бора (индекс у) по радиусу во времени, как видно на рис. 26, не обнаруживает никаких осцилляций протонов и ионов бора для реального ано-

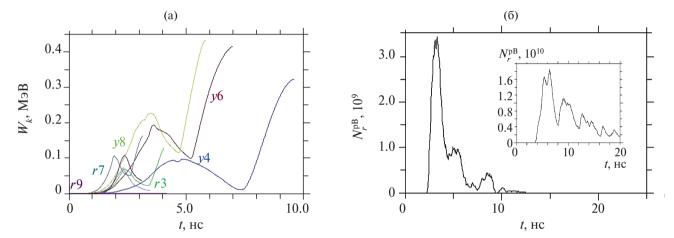


Рис. 1. Виртуальный катод (а) в межэлектродном пространстве HBP: векторные синие точки — электроны, красный — анод, синий — катод, зеленый — анодная «трубка», перпендикулярная основанию анода; (б) — скорости всех частиц V_r по радиусу анода, отнесенные к скорости света c: синие — электроны, желтые — ионы бора, красные — протоны, фиолетовые — первичные α -частицы, серые — бериллий ${}^8\mathrm{Be}^*$, оранжевые — вторичные α -частицы, возникающие из-за распада ${}^8\mathrm{Be}^*$ [23] (зеленая область — «анодная плазма», содержащая протоны и ионы бора с зарядом $Z_\mathrm{R} = +3$).

Рис. 2. Потенциальная яма (а) глубиной около 100 кВ, образуемая виртуальным катодом в анодном пространстве HBP (t = 10 нc); (б) — положение в анодном пространстве случайно выбранных групп протонов (индекс r) и ионов бора (y) в зависимости от времени, число при индексе — номер данной группы.

Рис. 3. Энергии (а) случайно выбранных различных групп протонов (r) и ионов бора (y) во времени для геометрии А–К, использованной в эксперименте [23]; (б) — выход вторичных α -частиц в зависимости от времени (п.е.) для геометрии А–К, использованной в эксперименте (рис. 1а); на вставке — выход α -частиц при хорошо определенных осцилляциях ионов в потенциальной яме (PiC-моделирование [23]).

да (координаты, скорости, энергия и действуюшие на группу частиц электрические поля прослеживаются во времени). Полученный график зависимости энергий различных групп протонов и ионов бора во времени $W_k(t)$ для реального анода (рис. $\bar{3}$ а), в отличие от зависимости W_{ν} (t) в [23], также не содержит сильных периодических флуктуаций во времени, характерных для случая хорошо определенных осцилляций ионов в потенциальной яме [25, 26]. В результате, повидимому, в первых экспериментах по рВ синтезу в НВР [23] возникала небольшая и довольно узкая ПЯ (рис. 2а) и, кроме первичного схождения ионов к оси разряда и последующего их разлета в интервале времени t = 0 - 10 нс (рис. 26 и рис. 3а), фактически отсутствовали какие-либо осцилляции протонов и ионов бора (в отличие от более оптимальной геометрии А-К, использованной при PiC-моделировании в [23]). Электроны виртуального катода (при $r \le 0.1$ см) имеют довольно большую скорость (рис. 16), что может сделать «дно» потенциальной ямы (рис. 2а) не только узким, но и нестабильным во времени. Таким образом, основной выход α -частиц в эксперименте [23], по-видимому, имел место лишь из-за однократного схождения протонов и ионов бора к оси разряда (рис. 26), и наблюдается лишь в первые ≈ 10 нс (рис. 36).

Отметим, что в коде КАРАТ в принципе нельзя получать реальную оценку выхода си-частиц [11], но расчетные значения выхода в произвольных единицах (п.е.) позволяют провести сравнения между расчетами с отличающимися начальными параметрами задачи (или эксперимента), и проследить тенденции при их варьировании. Число рВ-реакций, получен-

ное при РіС-моделировании для экспериментальной геометрии А-К (рис. 1а) составляет $N_r^{\rm pB} = 1.07 \times 10^9$ (п.е.). На вставке рис. 36 для сравнения приведено число реакций для более оптимальной геометрии А-К [23], в которой есть осцилляции ионов, и оно оказывается более чем на порядок выше. Действительно, как показало дальнейшее РіС-моделирование [26], увеличивая радиус анода и длину ПЯ по сравнению с показанной на рис. 2а, можно заметно повысить выход рВ-реакции. В частности, число рВреакций для различных значений радиуса анода в интервале $\dot{R}_{\rm A} = 0.1 - 0.7$ см при длине потенциальной ямы $L \approx 1 - 1.5$ см, в которой осциллируют ионы бора и протоны, участвующие в реакции, составляет $N_r^{\rm pB} \approx 1.9 \times 10^{10} - 1.15 \times 10^{11}$ (п.е.), согласно [26].

Ранее в [23] было подчеркнуто, что геометрия использованного в эксперименте старого анода с развитым микрорельефом является не оптимальной для достижения хорошо выраженных осцилляций ионов в ПЯ. Поэтому численная оценка выхода α-частиц была сделана в [23] именно в предположении, что основной вклад в рВ реакцию будет определяться однократным схождением встречных протонов и ионов бора к оси разряда с энергиями до ≈ 100 и ≈ 300 кэВ (для $Z_{\rm B}=+3$) соответственно, что качественно подтвердилось представленным выше РіС-моделированием (рис. 26 и рис. 3а). Согласно этой оценке, за один «выстрел» в НВР (с длительностью приложенного напряжения около 20 нс) для интервала сечения рВ-реакции 10^{-3} – 10^{-2} барн (и с учетом всплеска до 0.1 барна при вторичном резонансе) можно получить выход α -частиц $N_{\alpha} \approx 18-180$. В эксперименте [23] выход а-частиц за выстрел составил в среднем $N_{\rm q}^{\rm exp} \approx 250$.

ЗАКЛЮЧЕНИЕ

Представленные выше результаты моделирования для реальной геометрии А-К показали, что общий наблюдаемый выход α-частиц был накоплен, по-видимому, за счет разовых схождений протонов и ионов бора к оси разряда при каждом выстреле, а их осцилляций для геометрии анод-катод, использованной в эксперименте [23], практически нет [26]. Однако даже при неоптимальной конфигурации А–К в первых экспериментах по анейтронному синтезу рВ в одном миниатюрном устройстве на основе НВР все-таки удалось зарегистрировать определенный выход α-частиц [23]. В режиме хорошо определенных осцилляций (осцилляторного удержания ионов) при более оптимальной геометрии A–K и увеличенном объеме потенциальной ямы можно надеяться получить выход

 α -частиц $N_{\alpha}^{\text{exp}} \sim 10^3$ и выше (вставка на рис. 3б) [23,26]. Если напряжение в НВР увеличить, например, до $U \approx 150 \text{ кB}$, можно будет несколько приблизиться и к основному резонансному пику реакции рВ при 675 кэВ, что также увеличит выход а-частиц. Что касается возможного источника α-частиц на основе НВР, то, если использовать импульсно-периодический генератор высокого напряжения и решить проблемы эрозии анода и отвода тепла, выход α-частиц будет пропорционален частоте подаваемых импульсов напряжения, например, при ~ 1 кГц это может составить около $10^6 - 10^7$ α -частиц/с. Это не так много, как для некоторых лазерных источников α-частиц [21], но практическая ниша для НВР в качестве простого и дешевого источника а-частиц вполне возможна. Добавим, что частоты осцилляций протонов и ионов бора в потенциальной яме будут заметно отличаться из-за разницы в массах и зарядов ионов, и выход рВ-реакции будет определяться не только процессами вблизи оси разряда, как в случае DD-синтеза [25], но и реакциями во всем анодном объеме НВР [26]. Представленные выше расчеты выхода реакции рВ в эксперименте [23] послужили отправной точкой для дальнейшего РіС-моделирования в диапазоне значений радиуса анода $R_{\rm A} = 0.1 - 0.7$ см. Оно показало [26], что мощность анейтронного синтеза протон-бор, в заметном отличии от скейлинга DD-синтеза в осциллирующей плазме [25], растет с увеличением радиуса виртуального катода и длины потенциальной ямы по оси z.

Данная работа выполнена при поддержке Министерства науки и высшего образования РФ (госзадание № 075-00270-24-00).

СПИСОК ЛИТЕРАТУРЫ

- Дубинов А.Е., Корнилова И.Ю., Селимир В.Д. Коллективное ускорение ионов в системах с виртуальным катодом // УФН. 2002. Т. 172. № 11. С. 1225.
- Баренгольц С.А., Месяц Г.А., Перельштейн Э.А. Модель коллективного ускорения ионов в вакуумном разряде на основе концепции глубокой потенциальной ямы // ЖЭТФ. 2000. Т. 118. Вып. 6(12). С. 1358.
- Баренгольц С.А., Месяц Г.А., Перельштейн Э.А. Феноменологическая модель неустойчивой стадии вакуумного искрового разряда // ЖТФ. 2009. Т. 79. Вып. 10. С. 45.
- 4. *Miley G.H., Murali S.K.* Inertial Electrostatic Confinement (IEC) Fusion Fundamentals and Applications. N.Y.: Springer, 2014.
- Lavrent'ev O.A. Electrostatic and Electromagnetic High-temperature Plasma Traps // Ann. N.Y. Acad. Sci. 1975. V. 251. P. 152.

- Elmore W.C., Tuck J.L., Watson K.M. On the Inertialelectrostatic Confinement of a Plasma // Phys. Fluids. 1959. V. 2. P. 239.
- 7. Kurilenkov Yu.K., Skowronek M., Dufty J. Multiple DD Fusion Events at Interelectrode Media of Nanosecond Vacuum Discharge // J. Phys. A: Math. Gen. 2006. V. 39. P. 4375.
- Kurilenkov Yu.K., Tarakanov V.P., Skowronek M., Gus'kov S.Yu., Dufty J. Inertial Electrostatic Confinement and DD Fusion at Interelectrode Media of Nanosecond Vacuum Discharge. PIC Simulations and Experiment // J. Phys. A: Math. Theor. 2009. V. 42. 214041.
- 9. Kurilenkov Yu.K., Tarakanov V.P., Gus'kov S.Yu., Karpukhin V.T., Valyano V.E. Warm Dense Matter Generation and DD Synthesis at Vacuum Discharge with Deuterium-loaded Pd Anode // Contrib. Plasma Phys. 2011. V. 51. P. 427.
- Kurilenkov Yu.K., Tarakanov V.P., Gus'kov S.Yu., Oginov A.V., Karpukhin V.T. Oscillating Ions under Inertial Electrostatic Confinement (IEC) Based on Nanosecond Vacuum Discharge // Contrib. Plasma Phys. 2018. V. 58. P. 952.
- 11. Andreev S.N., Kurilenkov Yu.K., Oginov A.V. Fully Electromagnetic Code KARAT Applied to the Problem of Aneutronic Proton—Boron Fusion // Mathematics. 2023. V. 11. 4009.
- 12. Atzeni S., Meyer-ter Vehn J. The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter. Oxford: Oxford University Press, 2004. V. 125.
- 13. *Oliphant M., Rutheford L.* Experiments on the Transmutation of Elements by Protons // Proc. R. Soc. Lond. 1933. V. A141. P. 259.
- Dee P.I., Gilbert C.W. The Disintegration of Boron into Three α-particles // Proc. R. Soc. Lond. 1936. V. 154. P. 279.
- 15. McKenzie W., Batani D., Mehlhorn T.A., Margarone D., Belloni F., Campbe E.M. et al. HB11–Understanding Hydrogen-Boron Fusion as a New Clean Energy Source // J. Fusion Energy. 2023. V. 42. P. 17. doi:10.1007/s10894-023-00349-9.
- 16. Cirrone G.A.P., Manti L., Margarone D., Petringa G., Giuffrida L., Minopoli A. et al. First Experimental Proof of Proton Boron Capture Therapy (PBCT) to

- Enhance Protontherapy Effectiveness // Sci. Rep. 2018. V. 8. № 1. P. 1141.
- 17. *Hong E., Jungmin A. et al.* Alpha Particle Effect on Multi-nanosheet Tunneling Field-effect Transistor at 3-nm Technology Node // Micromachines. 2019. V. 10. № 12. P. 847.
- Takacs S., Hermanne A., Tárkányi F., Ignatyuk A. Cross-sections for Alpha Particle Produced Radionuclides on Natural Silver // Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2010. V. 268. P. 2.
- 19. Belyaev V.S., Matafonov A.P., Vinogradov V.I., Krainov V., Lisitsa V., Rusetski A.S. et al. Observation of Neutronless Fusion Reactions in Picosecond Laser Plasmas // Phys. Rev. E. 2005. V. 72. № 2. 026406.
- 20. Bonvalet J., Nicolai Ph., Rafestin D. et al. Energetic α-particle Sources Produced Through Proton-boron Reactions by High-energy High-intensity Laser Beams // Phys. Rev. E. 2021. V. 103. № 5. 053202.
- 21. Margarone D., Bonvalet J., Giufrida L., Morace A., Kantarelou V., Tosca M. et al. In-Target Proton Boron Nuclear Fusion Using a PW-Class Laser // Appl. Sci. 2022. V. 12. P. 1444.
- 22. Magee R.M., Ogawa K., Tajima T., Allfrey I., Gota H., McCarroll P. et al. First Measurements of p11B Fusion in a Magnetically Confined Plasma // Nature Commun. 2023. V. 14. P. 955.
- 23. Kurilenkov Yu.K., Oginov A.V., Tarakanov V.P., Gus'kov S.Yu., Samoylov I.S. Proton-boron Fusion in a Compact Scheme of Plasma Oscillatory Confinement // Phys. Rev. E. 2021. V. 103. 043208.
- 24. Kurilenkov Yu.K., Tarakanov V.P., Gus'kov S.Yu. Simulation of Proton—boron Nuclear Burning in the Potential Well of Virtual Cathode at Nanosecond Vacuum Discharge // J. Phys.: Conf. Ser. 2016. V. 774. 012133.
- 25. Kurilenkov Yu.K., Tarakanov V.P., Oginov A.V., Gus'kov S.Yu., Samoylov I.S. Oscillating Plasmas for Proton-Boron Fusion in Miniature Vacuum Discharge // Laser Part. Beams. 2023. 9563197.
- 26. *Kurilenkov Yu.K.*, *Andreev S.N.* On Scaling of Proton-Boron Fusion Power in a Nanosecond Vacuum Discharge // Frontiers in Physics (Fusion Plasma Physics). 2024. doi: 10.3389/fphy.2024.1440040.