УЛК 536.24

НЕСТАЦИОНАРНАЯ ТЕПЛОПРОВОДНОСТЬ СФЕРИЧЕСКОГО ТЕЛА С ВНУТРЕННЕЙ ПОЛОСТЬЮ ПРИ ГРАНИЧНЫХ УСЛОВИЯХ СМЕШАННОГО ТИПА

© 2024 г. Ю. В. Видин, В. С. Злобин*

Сибирский федеральный университет, Красноярск, Россия *E-mail: zlobinsfu@mail.ru
Поступила в редакцию 18.12.2023 г.
После доработки 24.01.2024 г.
Принята к публикации 14.02.2024 г.

В статье приводится исследование характеристического уравнения, возникающего в задаче нагрева (охлаждения) полого шара при граничных условиях первого рода, аналитическими методами. Полученные математические формулы позволяют рассчитать собственные значения μ_n данной задачи и определить численные значения безразмерной температуры. Также приводятся выражения для собственных функций $K_n(\psi)$ и коэффициентов A_n . Для повышения точности расчета может быть использован простой принцип последующего приближения с помощью перехода к обратной функции.

DOI: 10.31857/S0040364424020122

ВВЕДЕНИЕ

В монографии [1] аналитически рассмотрена задача нестационарной теплопроводности сплошного однородного сферического тела при конвективном теплообмене на его наружной поверхности. В дополнение к этому исследованию авторами был предложен аналитический метод расчета собственных чисел для указанной задачи [2]. Рекомендуемый в данной работе способ позволяет определять собственные значения соответствующего характеристического уравнения с высокой математической точностью при использовании весьма простых инженерных формул. Однако на практике могут иметь место случаи, когда изучаемая конструкция содержит полость. Тогда методика определения искомого неустановившегося температурного поля в математическом отношении существенно усложняется [3]. В предлагаемой работе излагается инженерный подход для теоретического решения такого рода задач.

ПОСТАНОВКА ЗАДАЧИ И АНАЛИТИЧЕСКОЕ РЕШЕНИЕ

Проиллюстрируем его особенности на конкретном примере. Сформулируем рассматриваемый теплофизический процесс в полой сфере на основе следующих безразмерных соотношений:

$$\frac{\partial \theta}{\partial Fo} = \frac{\partial^2 \theta}{\partial w^2} + \frac{2}{\Psi} \frac{\partial \theta}{\partial \psi}; \tag{1}$$

$$\begin{split} & \psi_0 < \psi < 1, \ 0 < Fo < \infty; \\ & \frac{\partial \vartheta \left(\psi, Fo \right)}{\partial \psi} = 0 \ \text{при } \psi = \psi_0; \end{split} \tag{2}$$

$$\vartheta(\psi, Fo) = 0$$
 при $\psi = 1;$ (3)

$$\vartheta(\psi,0) = 1. \tag{4}$$

Здесь $\vartheta(\psi, \text{Fo}) = \frac{T_c - T(r, \tau)}{T_c - T_0}$ — относительная температура; T_c , T_0 — температура греющей среды и начальная температура тела соответственно, ${}^{\circ}\text{C}$; $\psi = \frac{r}{R}$ — безразмерная радиальная координата; R — радиус наружной поверхности тела, м; $\psi_0 = \frac{R_0}{R}$ — безразмерная радиальная координата внутренней поверхности изделия; R_0 — радиус полости, м; $\text{Fo} = \frac{a\tau}{R^2}$ — безразмерное время (число подобия Фурье); a — коэффициент температуропроводности материала тела, $\text{м}^2/\text{c}$; τ — время, с.

Аналитическое решение задачи (1)—(4) может быть представлено в виде бесконечного ряда

$$\vartheta(\psi, Fo) = \sum_{n=1}^{\infty} A_n K_n(\psi) \exp(-\mu_n^2 Fo), \qquad (5)$$

где $K_n(\psi)$ — собственная функция, имеющая вид

$$K_n(\psi) = \frac{\sin(\mu_n \psi)}{\mu_n \psi} + B_n \frac{\cos(\mu_n \psi)}{\mu_n \psi}.$$
 (6)

Подставляя зависимость (5) в граничное условие (2), находим соотношение для коэффициентов B_n

$$B_n = \frac{\Psi_0 \mu_n - \operatorname{tg}(\Psi_0 \mu_n)}{1 + (\Psi_0 \mu_n) \operatorname{tg}(\Psi_0 \mu_n)}.$$
 (7)

В частном случае $\psi_0 = 0$ (сплошное сферическое тело) из (7) получаем $B_n = 0$ и функция $K_n(\psi)$ существенно упрощается.

Далее, используя граничные условия на наружной поверхности рассматриваемого тела (3), находим характеристическое уравнение для определения собственных значений µ,

$$\operatorname{tg}\mu_n = -B_n$$

которое с учетом зависимости (7) можно представить в форме

$$\operatorname{tg} \mu_n = \frac{\operatorname{tg} \left(\psi_0 \mu_n \right) - \left(\psi_0 \mu_n \right)}{1 + \left(\psi_0 \mu_n \right) \operatorname{tg} \left(\psi_0 \mu_n \right)}.$$

Данное уравнение легко приводится к более удобному виду [3]

$$tg(1-\psi_0)\mu = -\psi_0\mu. \tag{8}$$

Если ввести обозначение

$$\beta = (1 - \psi_0)\mu, \tag{9}$$

то характеристическое выражение (8) преобразуется в соотношение

$$tg\beta = -\frac{\beta}{Bi^* - 1},\tag{10}$$

где в данном случае под условным числом подобия ${\rm Bi}^*$ понимается величина

$$\operatorname{Bi}^* = \frac{1}{\Psi_0}.$$

Уравнение (10) хорошо известно и подробно исследовано. Первые шесть корней уравнения типа (10) определены численным методом и в табличной форме приведены в [1]. Численные методы решения трансцендентных уравнений широко используются при решении теплофизических задач [4, 5]. Авторами в ряде работ показано, что решение характеристических уравнений может быть получено аналитическими методами [6, 7]. В статье [2], кроме этого, дано подробнейшее аналитическое исследование этого весьма важного характеристического уравнения. Вполне очевидно, что если могут быть достаточно просто рассчитаны значения β_n (n = 1, 2, 3и т.д.), то затем легко определяются и числа μ_n на основе (9)

$$\mu_n = \frac{\beta_n}{1 - \psi_0}.$$

С учетом важности корней β_n в табл. 1 приводятся более расширенные по сравнению с имеющимися в [1] данные о первых шести β_n , начиная с минимально возможного теплофизического параметра $\mathrm{Bi}^* > 1$.

В табл. 2 дополнительно указаны некоторые эталонные величины собственных значений β_n выражения (10) для вполне определенных величин параметра Ві * .

Наряду с рекомендуемыми табличными решениями уравнения (10) целесообразно для расширения возможностей его исследования использовать для произвольной величины Bi* несложные аналитические зависимости следующего вида:

$$\beta_{n} = \frac{2n-1}{2}\pi \left[1 + \frac{3}{2(Bi^{*} + 2)} \times \left(11 \right) \right] \times \left[\sqrt{1 + \frac{48(Bi^{*} - 1)(Bi^{*} + 2)}{9(2n-1)^{2}\pi^{2}}} - 1 \right],$$

$$\beta_{n} = n\pi \left[1 + \frac{3Bi^{*}}{2n^{2}\pi^{2}} \left(\sqrt{1 + \frac{12n^{2}\pi^{2}}{9Bi^{*}}} - 1 \right) \right].$$
(12)

ПРИМЕР РАСЧЕТА

Проведем расчет корней характеристического уравнения (10) по вышеприведенным формулам. Обе формулы (11), (12) дают несколько завышенный результат для β_n . Так, например, при $\mathrm{Bi}^*=5$ для варианта n=1 получаем

$$\beta_1 = \frac{\pi}{2} \left[1 + \frac{3}{2(5+2)} \left[\sqrt{1 + \frac{48(5-1)(5+2)}{9\pi^2}} - 1 \right] \right] = \frac{2}{58608}$$

а если применить выражение (12), то результат булет

$$\beta_1 = \pi \left[1 + \frac{3 \times 5}{2\pi^2} \left[\sqrt{1 + \frac{12\pi^2}{9 \times 25}} - 1 \right] \right] = 2.57946.$$

Следовательно, в данном случае принимаем за аналитический результат $\beta_1 = 2.57946$. Действительное значение β_1 , найденное численным методом, равно $\beta_1 = 2.5704$, т.е. невязка составляет около 0.35%. Проведем аналогичные расчеты при $\text{Bi}^* = 5$ для второго корня (n = 2). Тогда на основе (11) находим

$$\beta_2 = \frac{3}{2}\pi \left[1 + \frac{3}{2(5+2)} \left[\sqrt{1 + \frac{48(5-1)(5+2)}{81\pi^2}} - 1 \right] \right] = 5.3561,$$

Таблица 1. Значения первых шести корней β_n характеристического уравнения (10)

Bi*	β_1	β_2	β_3	β_4	β_5	β_6
1.00	1.5708	4.7124	7.8540	10.9956	14.1372	17.2788
1.05	1.6020	4.7230	7.8603	11.0001	14.1407	17.2817
1.10	1.6320	4.7335	7.8667	11.0047	14.1442	17.2845
1.15	1.6609	4.7440	7.8730	11.0092	14.1478	17.2874
1.20	1.6887	4.7544	7.8794	11.0137	14.1513	17.2903
1.25	1.7155	4.7648	7.8857	11.0183	14.1548	17.2932
1.30	1.7414	4.7751	7.8920	11.0228	14.1584	17.2961
1.35	1.7664	4.7854	7.8983	11.0273	14.1619	17.2990
1.40	1.7906	4.7956	7.9045	11.0318	14.1654	17.3019
1.45	1.8140	4.8058	7.9108	11.0363	14.1689	17.3048
1.50	1.8366	4.8158	7.9171	11.0408	14.1724	17.3076
1.55	1.8585	4.8259	7.9233	11.0453	14.1759	17.3105
1.60	1.8798	4.8358	7.9295	11.0498	14.1795	17.3134
1.65	1.9004	4.8457	7.9357	11.0543	14.1830	17.3163
1.70	1.9203	4.8556	7.9419	11.0588	14.1865	17.3192
1.75	1.9397	4.8653	7.9481	11.0633	14.1900	17.3220
1.80	1.9586	4.8750	7.9542	11.0677	14.1935	17.3249
1.85	1.9769	4.8847	7.9604	11.0722	14.1970	17.3278
1.90	1.9947	4.8942	7.9665	11.0766	14.2005	17.3306
1.95	2.0119	4.9037	7.9760	11.0811	14.2040	17.3335
2.00	2.0288	4.9132	7.9787	11.0855	14.2074	17.3364
2.50	2.1746	5.0036	8.0385	11.1295	14.2421	17.3649
3.00	2.2889	5.0870	8.0962	11.1727	14.2764	17.3932
3.50	2.3806	5.1633	8.1516	11.2149	14.3101	17.4213
4.00	2.4556	5.2329	8.2045	11.2560	14.3434	17.4490
5.00	2.5704	5.3540	8.3029	11.3348	14.4080	17.5034
6.00	2.6537	5.4544	8.3913	11.4086	14.4699	17.5562
7.00	2.7165	5.5378	8.4703	11.4773	14.5288	17.6072
8.00	2.7654	5.6078	8.5406	11.5408	14.5847	17.6562
9.00	2.8044	5.6669	8.6031	11.5993	14.6374	17.7032
10.0	2.8363	5.7172	8.6587	11.6532	14.6869	17.7481
20.0	2.9857	5.9783	8.9831	12.0029	15.0384	18.0887
30.0	3.0372	6.0766	9.1201	12.1691	15.2245	18.2870
50.0	3.0788	6.1582	9.2384	12.3200	15.4034	18.4888
100	3.1102	6.2204	9.3308	12.4414	15.5521	18.6632

а по формуле (12)

$$\beta_2 = 2\pi \left[1 + \frac{3 \times 5}{2 \times 4\pi^2} \left[\sqrt{1 + \frac{12 \times 4\pi^2}{9 \times 25}} - 1 \right] \right] = 5.3733.$$

Из этих двух вычисленных величин берем наименьшую $\beta_2 = 5.3733$. Табличное значение $\beta_2 = 5.3540$, т.е. разница составляет менее 0.04%. Из математического анализа рекомендуемых соотношений (11), (12) вытекает, что расчет по ним корней при (n > 1) характеризуется весьма высокой точностью.

Применительно к вариантам, когда n=1, расчетные величины мало отличаются от численных результатов при $1 \le \text{Bi}^* \le 4$ и $\text{Bi}^* \ge 5$. Зона наибольшей невязки находится в окрестности $\text{Bi}^* = 5$ и не превышает 0.5%. Точность расчета может быть повышена путем использования обратных тригонометрических функций [8]. Если для названного случая желательно повысить точность расчета, то может быть использован принцип последующего приближения с помощью перехода к обратной тригонометрической функции вида

$$\beta_{1\min} = \arctan\left(-\frac{\beta_{1\max}}{Bi^* - 1}\right). \tag{13}$$

В табл. 3, составленной на основе справочника [9], приведена некоторая дополнительная часть этой функциональной связи. Так, например, с ее помощью легко установить нижнее значение $\beta_{1 min}$ при $\mathrm{Bi}^* = 5$ по выражению

$$\beta_{1min} = arctg \biggl(-\frac{2.5795}{5-1} \biggr) = arctg \bigl(-0.64488 \bigr) = 2.5688.$$

Таблица 2. Аналитические значения некоторых корней характеристического уравнения (10)

$Bi^* - 1$	β_n
0	$\frac{2n-1}{2}\pi$
$\frac{3n-1}{\sqrt{3}\times 3}$	$\frac{3n-1}{3}\pi$
$\frac{4n-1}{4}\pi$	$\frac{4n-1}{4}\pi$
$\frac{5n-1}{3.6325}\pi$	$\frac{5n-1}{5}\pi$
$\sqrt{3}\frac{6n-1}{6}\pi$	$\frac{6n-1}{6}\pi$
∞	$n\pi$

Эта величина β_1 , являющаяся оценкой искомого корня снизу, отличается от действительной в меньшую сторону всего на 0.06%. В справочной книге [10] приведена краткая таблица функции вида (13) для небольшого интервала значений положительного аргумента.

Коэффициенты A_n решения (5) определяются из начального условия рассматриваемой задачи:

$$\sum_{n=1}^{\infty} A_n K_n(\psi) = 1.$$

Отсюда следует

$$A_n = \frac{\int\limits_{\psi_0}^1 \psi^2 K_n(\psi) d\psi}{\int\limits_{\psi_0}^1 \psi^2 K_n^2(\psi) d\psi}.$$

С учетом (6) это выражение принимает вид

$$A_{n} = \mu_{n} \frac{\int_{\psi_{0}}^{1} \psi \left[\sin(\mu_{n} \psi) + B_{n} \cos(\mu_{n} \psi) \right] d\psi}{\int_{\psi_{0}}^{1} \left[\sin(\mu_{n} \psi) + B_{n} \cos(\mu_{n} \psi) \right]^{2} d\psi}.$$
(14)

Таблица 3. Таблица значений обратной тригонометрической функции $arctg\left(-\frac{\beta}{Bi^*-1}\right)$

$\frac{\beta}{\mathrm{Bi}^* - 1}$	$\left arctg \left(-\frac{\beta}{Bi^* - 1} \right) \right $	$\frac{\beta}{Bi^* - 1}$	$\left \operatorname{arctg} \left(-\frac{\beta}{\operatorname{Bi}^* - 1} \right) \right $	$\frac{\beta}{Bi^* - 1}$	$\left \operatorname{arctg} \left(-\frac{\beta}{Bi^* - 1} \right) \right $	$\frac{\beta}{Bi^* - 1}$	$arctg\left(-\frac{\beta}{Bi^*-1}\right)$
1.40	2.1910	1.20	2.2655	1.00	2.3562	0.80	2.4669
1.39	2.1944	1.19	2.2697	0.99	2.3612	0.79	2.4730
1.38	2.1979	1.18	2.2738	0.98	2.3663	0.78	2.4792
1.37	2.2013	1.17	2.2780	0.97	2.3714	0.77	2.4854
1.36	2.2048	1.16	2.2823	0.96	2.3766	0.76	2.4917
1.35	2.2083	1.15	2.2865	0.95	2.3818	0.75	2.4981
1.34	2.2119	1.14	2.2909	0.94	2.3871	0.74	2.5045
1.33	2.2155	1.13	2.2952	0.93	2.3924	0.73	2.5110
1.32	2.2191	1.12	2.2997	0.92	2.3978	0.72	2.5176
1.31	2.2228	1.11	2.3041	0.91	2.4033	0.71	2.5242
1.30	2.2265	1.10	2.3086	0.90	2.4088	0.70	2.5309
1.29	2.2302	1.09	2.3132	0.89	2.4143	0.69	2.5376
1.28	2.2340	1.08	2.3178	0.88	2.4199	0.68	2.5444
1.27	2.2378	1.07	2.3224	0.87	2.4256	0.67	2.5513
1.26	2.2417	1.06	2.3271	0.86	2.4313	0.66	2.5582
1.25	2.2455	1.05	2.3318	0.85	2.4371	0.65	2.5652
1.24	2.2495	1.04	2.3366	0.84	2.4429	0.64	2.5723
1.23	2.2534	1.03	2.3414	0.83	2.4488	0.63	2.5794
1.22	2.2574	1.02	2.3463	0.82	2.4548	0.62	2.5866
1.21	2.2615	1.01	2.3512	0.81	2.4609	0.61	2.5939

В частном случае, а именно когда $\psi_0=0$, из (14) следует [11]

$$A_n = \mu_n \frac{\int\limits_0^1 \psi \sin(\mu_n \psi) d\psi}{\int\limits_0^1 \psi_0 \sin^2(\mu_n \psi) d\psi} = 2(-1)^{n+1}.$$

Выражение (14) может быть доведено до расчетного вида с помощью известных справочников [10-13]:

$$A_{n} = \left\{ \frac{\sin(\mu_{n}) - \sin(\psi_{0}\mu_{n})}{\mu_{n}} - \left(\cos(\mu_{n}) - \psi_{0}\cos(\psi_{0}\mu_{n})\right) + B_{n} \times \left[\left(\frac{\cos(\mu_{n}) - \cos(\psi_{0}\mu_{n})}{\mu_{n}}\right) + \left(\sin(\mu_{n}) - \psi_{0}\sin(\psi_{0}\mu_{n})\right) \right] \right\} \times \left\{ \frac{1 - \psi_{0}}{2} - \frac{1}{4\mu_{n}} \left(\sin(2\mu_{n}) - \sin(2\mu_{n}\psi_{0})\right) - (15) - \frac{B_{n}}{2\mu_{n}} \left(\cos(2\mu_{n}) - \cos(2\mu_{n}\psi_{0})\right) + \left(\frac{1 - \psi_{0}}{2} - \frac{1}{4\mu_{n}} \left(\sin(2\mu_{n}) - \sin(2\mu_{n}\psi_{0})\right) \right) \right\}^{-1}.$$

Приведем первые шесть значений коэффициентов A_n , рассчитанных по формуле (15) для $\psi_0=0.5$ (Bi* = 2): $A_1=2.0378,\ A_2=3.5409,\ A_3=3.8172,\ A_4=3.9039,\ A_5=3.9411,\ A_6=3.9603.$

Из общего решения (5) поставленной задачи нетрудно выразить зависимость безразмерной температуры на внутренней поверхности сферического тела от времени, которая имеет вид

$$\vartheta(\psi_0, Fo) = \sum_{n=1}^{\infty} \frac{A_n \exp(-\mu_n^2 Fo)}{\cos(\mu_n \psi_0) (1 + (\psi_0 \mu_n) \operatorname{tg}(\psi_0 \mu_n))}$$

Эта формула позволяет определить динамику изменения наиболее важной с технической точки зрения температуры в ходе теплофизического процесса.

ЗАКЛЮЧЕНИЕ

Полученные формулы определения собственных значений характеристического уравнения (10) позволяют с высокой точностью опреде-

лять корни этого уравнения для полого шара при смешанных граничных условиях. Точность этих корней может быть повышена использованием обратных тригонометрических функций. Также получены и доведены до расчетного вида выражения для собственных функций данной задачи, что позволяет эффективно решать теплофизические задачи для данной геометрической конфигурации.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Лыков А.В.* Теория теплопроводности. М.: Высшая школа, 1967. 600 с.
- Видин Ю.В., Злобин В.С. Аналитический метод расчета собственных чисел в задаче нестационарной теплопроводности сферического тела // ТВТ. 2023. Т. 61. № 2. С. 315.
- 3. *Карташов Э.М.* Аналитические методы в теории теплопроводности твердых тел. Учеб. пособ. М.: Высшая школа, 2001. 550 с.
- 4. *Григорьев Л.Я., Маньковский О.Н.* Инженерные задачи нестационарного теплообмена. Л.: Энергия, 1968. 83 с.
- Самарский А.А., Гулин А.В. Численные методы. Учеб. пособ. для вузов. М.: Наука; Гл. ред. физ.мат. лит., 1989. 432 с.
- 6. Видин Ю.В., Злобин В.С. К расчету собственных чисел в задаче нестационарной теплопроводности плоского тела при несимметричных граничных условиях третьего рода // Изв. РАН. Энергетика. 2021. № 2. С. 75.
- 7. *Видин Ю.В., Злобин В.С.* Определение собственных значений в задаче нестационарной теплопроводности неоднородного плоского тела // Изв. РАН. Энергетика. 2022. № 2. С. 73.
- 8. Рыбасенко В.Д., Рыбасенко И.Д. Элементарные функции: формулы, таблицы, графики. М.: Наука, 1987. 461 с.
- 9. *Сегал Б.И.*, *Семендяев К.А*. Пятизначные математические таблицы. М.: ГИФМЛ, 1962. 449 с.
- Двайт Г.Б. Таблицы интегралов. М.: Наука, 1983.
 172 с.
- 11. *Фильчаков Г.Ф.* Справочник по высшей математике. Киев: Наукова думка, 1974. 743 с.
- 12. *Бронштейн И.Н., Семендяев К.А.* Справочник по математике. М.: Наука, 1965. 608 с.
- 13. *Градитейн И.С., Рыжик И.М.* Таблицы интегралов, сумм, рядов и произведений. М.: ГИФМЛ, 1963. 1100 с.