Экстракция ионов Ti(IV) из хлоридных растворов гидрофобным глубоким эвтектическим растворителем Aliquat 336/ментол

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Гидрометаллургические методы остаются одними из самых перспективных для переработки литий-ионных батарей, а жидкость-жидкостная экстракция служит ключевым этапом разделения сложной смеси элементов, входящих в состав анода и катода. Развитие и усложнение состава элементов питания, в частности активное производство литий-титанатных анодов, требует дополнительных исследований по экстракции. В работе подробно изучена экстракция ионов Ti(IV) гидрофобным глубоким эвтектическим растворителем Aliquat 336/ментол, который ранее успешно применялся для разделения элементов из растворов выщелачивания катодов типа NMC (LiNiMnCoO2). Были получены данные по экстракции ионов титана(IV) в зависимости от кислотности среды, концентрации хлорид-ионов, а также концентрации экстрагента в глубоком эвтектическом растворителе. На основании этих данных был предложен механизм экстракции ионов титана(IV). В завершение была предложена система для эффективной регенерации экстрагента. Результат этой работы может быть использован для создания экстракционной схемы разделения растворов выщелачивания литий-ионных батарей с литий-титанатным анодом.

Об авторах

А. В. Кожевникова

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: yz@igic.ras.ru
Россия, Москва

Е. С. Уварова

Институт общей и неорганической химии им. Н.С. Курнакова РАН; Российский химико-технологический университет им. Д.И. Менделеева

Email: yz@igic.ras.ru
Россия, Москва; Россия, Москва

Д. В. Лобович

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: yz@igic.ras.ru
Россия, Москва

Н. А. Милевский

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: yz@igic.ras.ru
Россия, Москва

Ю. А. Заходяева

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Автор, ответственный за переписку.
Email: yz@igic.ras.ru
Россия, Москва

А. А. Вошкин

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: yz@igic.ras.ru
Россия, Москва

Список литературы

  1. Mohr M., Peters J.F., Baumann M., Weil M. Toward a Cell-chemistry Specific Life Cycle Assessment of Lithium-ion Battery Recycling Processes // J. Ind. Ecol. 2020. V. 24. P. 1310–1322. https://doi.org/10.1111/jiec.13021
  2. Zen X., Li J., Singh N. Recycling of Spent Lithium-Ion Battery: A Critical Review // Crit. Rev. Environ. Sci. Technol. 2014. V. 44. P. 1129–1165.https://doi.org/10.1080/10643389.2013.763578
  3. Winslow K.M., Laux S.J., Townsend T.G. A Review on the Growing Concern and Potential Management Strategies of Waste Lithium-Ion Batteries // Resour. Conserv. Recycl. 2018. V. 129. P. 263–277. https://doi.org/10.1016/j.resconrec.2017.11.001
  4. Vaalma C., Buchholz D., Weil M., Passerini S. A Cost and Resource Analysis of Sodium-Ion Batteries // Nat. Rev. Mater. 2018. V. 3. P. 18013. https://doi.org/10.1038/natrevmats.2018.13
  5. Ferg E.E., Schuldt F., Schmidt J. The Challenges of a Li-Ion Starter Lighting and Ignition Battery: A Review from Cradle to Grave // J. Power. Sources. 2019. V. 423. P. 380–403. https://doi.org/10.1016/j.jpowsour.2019.03.063
  6. Kumar B., Srivastava R.R., Barik S.P. Hydrometallurgical Recycling of Lithium-Titanate Anode Batteries: Leaching Kinetics and Mechanisms, and Life Cycle Impact Assessment // Miner. Eng. 2023. V. 202. P. 108289. https://doi.org/10.1016/j.mineng.2023.108289
  7. Barik S.P., Prabaharan G., Kumar L. Leaching and Separation of Co and Mn from Electrode Materials of Spent Lithium-Ion Batteries Using Hydrochloric Acid: Laboratory and Pilot Scale Study // J. Clean. Prod. 2017. V. 147. P. 37–43.https://doi.org/10.1016/j.jclepro.2017.01.095
  8. Barik S.P., Prabaharan G., Kumar B. An Innovative Approach to Recover the Metal Values from Spent Lithium-Ion Batteries // Waste. Management. 2016. V. 51. P. 222–226.https://doi.org/10.1016/j.wasman.2015.11.004
  9. Gao W., Song J., Cao H., Lin X., Zhang X., Zheng X., Zhang Y., Sun Z. Selective Recovery of Valuable Metals from Spent Lithium-Ion Batteries – Process Development and Kinetics Evaluation // J. Clean. Prod. 2018. V. 178. P. 833–845.https://doi.org/10.1016/j.jclepro.2018.01.040
  10. Cao J., Su E. Hydrophobic Deep Eutectic Solvents: The New Generation of Green Solvents for Diversified and Colorful Applications in Green Chemistry // J. Clean. Prod. 2021. V. 314. P. 127965.https://doi.org/10.1016/j.jclepro.2021.127965
  11. van Osch D.J.G.P., Zubeir L.F., van den Bruinhorst A., Rocha M.A.A., Kroon M.C. Hydrophobic Deep Eutectic Solvents as Water-Immiscible Extractants // Green Chemistry. 2015. V. 17. P. 4518–4521. https://doi.org/10.1039/C5GC01451D
  12. Milevskii N.A., Zinov’eva I.V., Kozhevnikova A.V., Zakhodyaeva Y.A., Voshkin A.A. Sm/Co Magnetic Materials: A Recycling Strategy Using Modifiable Hydrophobic Deep Eutectic Solvents Based on Trioctylphosphine Oxide // Int. J. Mol. Sci. 2023. V. 24. P. 14032. https://doi.org/10.3390/ijms241814032
  13. Xue K., Fan D., Wang X., Dong Z., Zhu Z., Cui P., Meng F., Wang Y., Qi J. Lithium Extraction from Aqueous Medium Using Hydrophobic Deep Eutectic Solvents // J. Environ. Chem. Eng. 2023. V. 11. P. 110490. https://doi.org/10.1016/j.jece.2023.110490
  14. Zinov’eva I.V., Kozhevnikova A.V., Milevskii N.A., Zakhodyaeva Yu.A., Voshkin A.A. Extraction of Cu(II), Ni(II), and Al(III) with the Deep Eutectic Solvent D2EHPA/Menthol // Theoretical Foundations of Chemical Engineering. 2022. V. 56. P. 221–229. https://doi.org/10.1134/S0040579522020178
  15. Zhu Z., Zhang W., Cheng C.Y. A Literature Review of Titanium Solvent Extraction in Chloride Media // Hydrometallurgy. 2011. V. 105. P. 304–313. https://doi.org/10.1016/j.hydromet.2010.11.006
  16. Filiz M., Sayar A.A. Extraction of Titanium(IV) from Aqueous Hydrochloric Acid Solutions Into Alamine 336-M-XYLene Mixtures // Chem. Eng. Commun. 2006. V. 193. P. 1127–1141. https://doi.org/10.1080/00986440500354457
  17. Tang W., Chen X., Zhou T., Duan H., Chen Y., Wang J. Recovery of Ti and Li from Spent Lithium Titanate Cathodes by a Hydrometallurgical Process // Hydrometallurgy. 2014. V. 147–148. P. 210–216. https://doi.org/10.1016/j.hydromet.2014.05.013
  18. Zhu K., Wei Q., Liu K., Li H., Ren X. Design and Combination of Magnetic Ionic Liquids and Hydrophobic Deep Eutectic Solvents for Safer Extraction of Titanium: Physicochemical Properties and Toxicity Studies // Green. Chemistry. 2022. V. 24. P. 7481–7491. https://doi.org/10.1039/D2GC01874H
  19. Kozhevnikova A.V., Zinov’eva I.V., Zakhodyaeva Y.A., Baranovskaya V.B., Voshkin A.A. Application of Hydrophobic Deep Eutectic Solvents in Extraction of Metals from Real Solutions Obtained by Leaching Cathodes from End-of-Life Li-Ion Batteries // Processes. 2022. V. 10. P. 2671. https://doi.org/10.3390/pr10122671
  20. Milevskii N.A., Zinov’eva I.V., Zakhodyaeva Yu.A., Voshkin A.A. Separation of Li(I), Co(II), Ni(II), Mn(II), and Fe(III) from Hydrochloric Acid Solution Using a Menthol-Based Hydrophobic Deep Eutectic Solvent // Hydrometallurgy. 2022. V. 207. P. 105777. https://doi.org/10.1016/j.hydromet.2021.105777
  21. Коростелев П.П. Фотометрический и Комплексометрический Анализ в Металлургии; Москва, 1984.
  22. Kislik V., Eyal A. Acidity Dependence of Ti(IV) Extraction: A critical Analysis // Solvent Extraction and Ion Exchange. 1993. V. 11. P. 259–283. https://doi.org/10.1080/07366299308918155
  23. Sarangi K., Padhan E., Sarma P.V.R.B., Park K.H., Das R.P. Removal/Recovery of Hydrochloric Acid Using Alamine 336, Aliquat 336, TBP and Cyanex 923. Hydrometallurgy. 2006. V. 84. P. 125–129. https://doi.org/10.1016/j.hydromet.2006.03.063
  24. Mishra R.K., Rout P.C., Sarangi K., Nathsarma K.C. Solvent Extraction of Fe(III) from the Chloride Leach Liquor of Low Grade Iron Ore Tailings Using Aliquat 336 // Hydrometallurgy. 2011. V. 108. P. 93–99. https://doi.org/10.1016/j.hydromet.2011.03.003
  25. Good M.L., Bryan S.E. Extraction of Group VIII Metals by Long Chain Alkyl Amines—II // J. Inorganic and Nuclear Chemistry. 1961. V. 20. P. 140–146. https://doi.org/10.1016/0022-1902(61)80471-5
  26. Sarangi K., Padhan E., Sarma P.V.R.B., Park K.H., Das R.P. Removal/Recovery of Hydrochloric Acid Using Alamine 336, Aliquat 336, TBP and Cyanex 923 // Hydrometallurgy. 2006. V. 84. P. 125–129. https://doi.org/10.1016/j.hydromet.2006.03.063

Дополнительные файлы


© А.В. Кожевникова, Е.С. Уварова, Д.В. Лобович, Н.А. Милевский, Ю.А. Заходяева, А.А. Вошкин, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».