Prototype of Digital Twin of Isopropylbenzene Hydroperoxide Decomposition Process for Phenol and Acetone Production
- Authors: Prosochkina T.R1, Kichatov K.G1
-
Affiliations:
- FGBOU VO "Ufa State Petroleum Technical University"
- Issue: Vol 59, No 4 (2025)
- Pages: 45-54
- Section: Articles
- Published: 15.08.2025
- URL: https://journals.rcsi.science/0040-3571/article/view/356770
- DOI: https://doi.org/10.7868/S3034605325040057
- ID: 356770
Cite item
Abstract
For the unit of decomposition of isopropylbenzene hydroperoxide of the process of phenol and acetone production the prototype of the digital twin on the basis of the created neural network model is developed, which allows to calculate online the outputs of main and by-products, energy resources and conditional profit with relative error not more than 0.73%. Formation of a database of values of technological process parameters is carried out with the use of simulation modeling of plant operation and subsequent verification of model adequacy by comparing the obtained calculated results with the actual values of technological parameters. As a prototype of the digital twin, allowing to determine optimal values of the cumene process parameters of isopropylbenzene hydroperoxide decomposition unit in the online mode, it is proposed to apply the microcontroller ESP-8266 with built-in and developed program written in the language C.
About the authors
T. R Prosochkina
FGBOU VO "Ufa State Petroleum Technical University"
Author for correspondence.
Email: t.r.prosochkina@mail.ru
Ufa, Russia
K. G Kichatov
FGBOU VO "Ufa State Petroleum Technical University"
Email: t.r.prosochkina@mail.ru
Ufa, Russia
References
- Kravets A.G., Bolshakov A.A. Cyber-Physical Systems: Design and Application for Industry 4.0 / Eds. Shcherbakov M., Switzerland: Springer Nature, 2021.
- Matana G., Simon T.A., Velázquez T.D.R., Mastrapa H.L., Helleno L.A. Cyber-Physical Systems as Key Element to Industry 4.0: Characteristics, Applications and Related Technologies // Engineering Management Journal. 2022. V. 35. № 4. P. 377.
- Javaid M., Haleem A., Singh R.P., Suman R. An integrated outlook of Cyber–Physical Systems for Industry 4.0: Topical practices, architecture, and applications // Green Technologies and Sustainability. 2023. V. 1. № 1. P. 1.
- Shaolin H., Qinghua Z., Naiquan S., Xiwu L. Petrochemical production Big Data and its four typical application paradigms // International Journal of Data Mining & Knowledge Management Process. 2021. V. 11. № 2–4. P. 15.
- Plehiers P.P., Symons S.H., Anghizar I., Marin G.B., Stevens C.V., Van Geem K.M. Artificial Intelligence in Steam Cracking Modeling: A Deep Learning Algorithm for Detailed Effluent Prediction // Engineering. 2019. V. 5. № 6. P. 1027.
- Mohammadpour M., Torabi F. Big Data analytics in oil and gas industry: An emerging trend // Petroleum. 2022. V. 6. P. 321.
- Oliveira L.M., Dias R., Rebello C.M., Martin M.A.F., Rodrigue A.E., Ribeiro A.M., Nogueira I.B.R. Artificial Intelligence and Cyber-Physical Systems: A Review and Perspectives for the Future in the Chemical Industry // AI. 2021. V. 2. № 3. P. 429.
- Melesse T.Y., Pasquale V.Di, Riemma S. Digital Twin Models in Industrial Operations: A Systematic Literature Review // Procedia Manuf. 2020. V. 42. P. 267.
- Radaniiev P., De Roure D., Van Kleek M., Santos O., Uchenna A. Artificial intelligence in cyber physical systems // AI & Society. 2021. V. 36. № 9. P. 429.
- Хуэй С., Синьтун Ч. Применение технологий искусственного интеллекта для оптимизации технологических процессов в производстве // Серия: Естественные и технические науки. Информатика, вычислительная техника и управление. 2024. № 4. С. 102.
- Prasad A. The evolution and diverse applications of artificial intelligence and control systems // Journal of Advanced Research in Instrumentation and Control Engineering. 2023. V. 10. № 2. P. 27.
- Yu P., Wan H., Bozhi Zhang B., Wu Q., Zhao B., Xu Ch. Yang Sh. Review on System Identification, Control, and Optimization Based on Artificial Intelligence // Mathematics. 2025. V. 13. № 6. P. 952.
- Zou P.X.W., Ma S. How digital twin technology may improve safety management: A multi-industry perspective // Safety Science. 2025. V. 189. P. 106837.
- Filho P.T.J.C., Junior O.C. Digital Twin in Industry 4.0: Systematic review and content analysis and an architectural reference model // Procedia Computer Science. 2025. V. 253. P. 2919.
- Li B. Research on the Application and Sustainable Development of Digital Twin Technology Based on Big Data Technology and Deep Learning in the Green Transformation of Manufacturing Industry // Procedia Computer Science. 2025. V. 261. P. 191.
- Bellavista P., Bicocchi N., Fogli M., Giannelli C., Manuel M., Picone M. Requirements and design patterns for adaptive, autonomous, and context-aware digital twins in industry 4.0 digital factories // Computers in Industry. 2023. V. 149. P. 103918.
- Tang Y.M., Kuo W.T., Lee C.K.M. Real-time Mixed Reality (MR) and Artificial Intelligence (AI) object recognition integration for digital twin in Industry 4.0 // Internet of Things. 2023. V. 23. P. 100753.
- Abiseef-Chavanne E., Coupaye T., Gohra F., Lamy D., Peel A., Scart O., Vacat-Blanc P. A digital twin use cases classification and definition framework based on Industrial feedback // Comput. Ind. 2024. V. 161. P. 104113.
- Rozhok A.P., Zykova K.I., Suschev S.P., Reverita R. The use of digital twin in the industrial sector // IOP Conf Ser Earth Environ Sci, 2021. V. 815. № 1. P. 012032.
- Belo R.C., Pimenta M.S., Salvador T.T., Petry R.H., Abel M. Fundamental requirements of Digital Twins for production system in Oil and Gas Industry: A systematic literature review // Information and Software Technology. 2025. V. 184. P. 107742.
- Kritzinger W., Karner M., Tracer G., Henjes J., Shin W. Digital twin in manufacturing: A categorical literature review and classification // IFAC-PapersOnLine. 2018. V. 51. № 11. P. 1016.
- Дудик М. Интеграция цифровых двойников оборудования и процесса // Control Engineering Россия. 2020. V.86. № 2. P. 63.
- Ананьева Е.А., Егорова Е.В., Ларин Л.В. Современное состояние и перспективы развития процессов получения фенола I. Обзор рынка и современное состояние процессов получения фенола. // Вестник МИТХТ. 2007. Т. 2. № 2. С. 27.
- Кружаков Б.Д., Голованенко Б.Н. Совместное получение фенола и ацетона. М.: Наука, 1963.
- Дахиави Э.М. Оптимизация совместного производства фенола и ацетона, комплексная переработка побочных продуктов в реагенты нефтедобычи. Дис. ... докт. хим. наук., Казань.: Ин-т, 2011.
- Vovdenko M.K., Gabaidulin I.M., Koledina K.F., Koledin S.N. Isopropylbenzene oxidation reaction computer simulation // 3rd International conference “Information Technology and Nanotechnology 2017”. 2017. P. 20.
- Haznee M.Ф. Теория рециркуляции и повышение оптимальности химических процессов. М.: Наука, 1970.
- Prakhar Srivastava P., Gupta A., Kaistha N. Compact process for cumene manufacture: Synthesis, design and control // Chemical Engineering Research and Design. 2023. T. 190. C. 220.
- Kichatov K.G., Prosochkina T.R., Vorobyova I.S. Principles of creating a digital twin prototype for the process of alkylation of benzene with propylene based on a neural network // Fine Chemical Technologies. 2023. V. 18. № 5. P. 482.
- Kichatov K.G., Prosochkina T.R., Yargina A.A., Vildanov F. Sh. A neural network digital twin prototype of the steam cracking process // Processes of Petrochemistry and oil Refining. 2025. V. 26. № 3. P. 933.
- https://www.honeywellforge.ai/us/en/products/industrials/unisim-design. Honeywell Unisim Design R451 2016.
- Закоманский В.М. Фенол и ацетон: анализ технологий, кинетики и механизма основных реакций. СПб.: ХИМИЗДАТ, 2009.
- MATLAB Simulink R2021b.
- https://www.Mathworks.Com/Products/MatlabHtml 2021.
- ESP8266 Datasheet [Electronic resource] // Espressif. 2023. URL: https://www.espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf (accessed: 21.10.2024).
Supplementary files


