REE Extraction with D2EHPA Solution Using a Microcontactor
- Authors: Golubina E.N1, Kizim N.F1
-
Affiliations:
- Novomoskovsk Institute of D.I. Mendeleev Russian Chemical Technology University
- Issue: Vol 59, No 4 (2025)
- Pages: 37-44
- Section: Articles
- Published: 15.08.2025
- URL: https://journals.rcsi.science/0040-3571/article/view/356769
- DOI: https://doi.org/10.7868/S3034605325040042
- ID: 356769
Cite item
Abstract
The development of high-intensity extractors operating in the pre-emulsion regime is a promising task in the field of d- and f-element extraction. In this work, a microcontactor is presented in which it is possible to extract 20% REEs from the initially taken amount in 34 s of phase contact. The influence of the composition of the extraction system, the nature of the solvent and REE, and the initial conditions of the process on the mass transfer coefficient has been established. The dependence of the Sherwood number on the Reynolds and Prandtl numbers was obtained. The results of the work can be useful for creation of new extractors operating in pre-emulsion mode.
About the authors
E. N Golubina
Novomoskovsk Institute of D.I. Mendeleev Russian Chemical Technology University
Author for correspondence.
Email: Elena-Golubina@mail.ru
Novomoskovsk, Russia
N. F Kizim
Novomoskovsk Institute of D.I. Mendeleev Russian Chemical Technology University
Email: Elena-Golubina@mail.ru
Novomoskovsk, Russia
References
- Сарычев Г.А., Стрихонов М.Н. Освоение сырьевых и техногенных источников редкоземельных металлов, программный метод и комплексный подход к созданию производственных P3M-мощностей // Цветные металлы. 2012. № 3. Р. 5.
- Manis Kumar Jha, Archana Kumari, Rekha Panda, Jyothi Rajesh Kumar, Kyoungkeun Yoo, Jin Young Lee. Review on hydrometallurgical recovery of rare earth metals // Hydrometallurgy. 2016. V. 161. № 5. Р. 77. https://doi.org/10.1016/j.hydromet.2016.01.003.
- Стеблевская Н.Н., Медков М.А. Функциональные материалы и покрытия на основе РЗЭ // Труды Кольского научного центра РАН. Химические науки. 2015. № 5. С. 471.
- Kozhevnikova, A.V., Uvarova, E.S., Lobovich, D.V., Milevskiy N.A., Zakhodyaeva Yu.A., Voshkin A.A. Extraction of Ti(IV) Ions from Chloride Solutions with the Aliquat 336–Menthol Hydrophobic Deep Eutectic Solvent // Theor. Found. Chem. Eng. 2023. V. 57. № 6. P. 1261. https://doi.org/10.1134/S004057952306012X
- Вальков А.В., Хмелевская Н.Д. Экстракция редкоземельных элементов смесями изомеров трибутилфосфата с нитратом триалкилметиламмония // Изв. вузов. Химия и хим. технология. 2018. Т. 61. № 7. С. 55. https://doi.org/10.6060/ivkt.20186107.5676.
- Stepanov S.I., Yen Hoa Nguyen Thi, Chekmarev A.M., Tsivadze A.Yu. Chemistry of the Extraction of La(NO3)3 and Ce(NO3)3 from Nitrate Solutions with Mixtures of Tri-n-Octylmethylammonium Nitrate and Tri-n-Butyl Phosphate in Toluene // Theor. Found. Chem. Eng. 2021. V. 55. № 2. Р. 270. https://doi.org/10.1134/S0040579521020111.
- Основы жидкостной экстракции / Под ред. Ягодна Г.А. М.: Химия, 1981.
- Ритчи Г.М., Эшбург А.В. Экстракция: принципы и применение в металлургии. М.: Металлургия, 1983.
- Касаткин А.Г. Основные процессы и аппараты химической технологии. М.: Химия, 1973.
- Globulin E., Kizim N., Alekseeva N. Intensification of the extraction of rare earth elements at the local mechanical vibration in the interfacial layer // Chemical Engineering & Processing: Process Intensification. 2018. V. 132. № 10. Р. 98. https://doi.org/10.1016@j.cep.2018.08.019.
- Golubina E.N., Kizim N.F. Extraction of Rare-Earth Elements with Solutions of tri-n-Butyl Phosphate under Local Vibrational Impact in Static and Flow-through Systems // Russ. J. of Appl. Chem. 2018. V. 91. № 5. Р. 828. https://doi.org/10.1134/S1070427218050142.
- Golubina E.N., Kizim N.F. Extraction of rare-earth elements with solutions of di-(2-ethylhexyl)-phosphoric acid in flow-through system under local vibrational treatment // Russ. J. of Appl. Chem. 2016. V. 89. № 11. Р. 175. https://doi.org/10.1134/S1070427216100451.
- Карашев Г.А. Физические методы интенсификации процессов химической технологии. М.: Химия, 1990.
- Little S.F., Pinto D., Brudi L.C., Silva L.F.O, Cadaval Jr T.R.S., Duarte F., Ahmad N., Nawaz A., Dotto G.L. Ultrasound-assisted leaching of rare earth elements from phosphogypsum // Chemical Engineering & Processing: Process Intensification. 2023. V. 191. № 9. Р. 109458. https://doi.org/10.1016/j.cep.2023.109458.
- Lebedci M.E., Kuhn S., Stefanidis G.D., Gerven T.V. Milli-channel mixer and phase separator for solvent extraction of rare earth elements // Chemical Engineering Journal. 2016. V. 293. № 6. Р. 273. https://doi.org/10.1016/j.cej.2016.02.083.
- Wang K., Luo G. Microflow extraction: A review of recent development // Chemical Engineering Science. 2017. V. 169. № 9. Р. 18. https://doi.org/10.1016/j.ces.2016.10.025.
- He Y., Zhang T., Lv L., Tang W., Wang Y., Tang S. Intensifying the extraction of rare earth elements by a mini-channel counter-current extractor // Separation and Purification Technology. 2024. V. 333. № 4. P. 125930. https://doi.org/10.1016/j.seppur.2023.125930.
- He Y., Pei J., Srinivasakannan C., Li S., Peng J., Guo Sh., Zhang L., Yin Sh. Extraction of samarium using a serpentine Y-junction microreactor with 2-ethylhexyl phosphonic acid mono-2-ethylhexyl // Hydrometallurgy. 2018. V. 179. № 8. P. 175. https://doi.org/10.1016/j.hydromet.2018.06.006.
- Darekar M., Sen N., Singh K.K., Mukhopadhyay S., Shenoy K.T., Ghosh S.K. Liquid–liquid extraction in microchannels with Zinc–D2EHPA system // Hydrometallurgy. 2014. V. 144–145. № 4. P. 54. http://dx.doi.org/10.1016/j.hydromet.2014.01.010.
- Yin Sh., Pei J., Peng J., Zhang L., Srinivasakannan C. Study on mass transfer behavior of extracting La(III) with EHEHPA (PS07) using rectangular cross-section microchannel // Hydrometallurgy. 2018. V. 175. № 1. P. 64. https://doi.org/10.1016/j.hydromet.2017.10.027.
- Liu Y., Zhang T., Lv L., Chen Ya., Tang Sh. Mass transfer and droplet formation regime in a countercurrent mini-channel extractor // Chemical Engineering Journal. 2020. V. 402. № 10. P. 125383. https://doi.org/10.1016/j.cej.2020.125383.
- Hou H., Jing Y., Wang Y., Wang Yu., Xu J., Chen J. Solvent extraction performance of Ce(III) from chloride acidic solution with 2-ethylhexyl phosphoric acid-2-ethylhexyl ester (EHEHPA) by using membrane dispersion micro-extractor // Journal of Rare Earths. 2015. V. 33. № 10. P. 1114. https://doi.org/10.1016/S1002-0721(14)60534-2.
- Murashova N.M., Yurtov E.V. State of the Art and Prospects for Studies of Structure Formation in Extraction Systems with Metal Compounds / Theor. Found. Chem. Eng. 2022. V. 56. № 1. P. 53. https://doi.org/10.1134/S0040579521060075.
- Kizim N.Ph., Davidov Yu.P., Larkov A.P. Dynamic Separation of some d- and f-Elements by Liquid-Liquid Extraction. Value, Adding, Through Solvent Extraction, v. 1. Melbume. 1996. P. 575.
- Бусев А.Н., Типидва В.Г., Иванов В.М. Руководство по аналитической химии редких элементов. М.: Химия, 1978.
- Kizim N.F., Golubina E.N., Tarasov V.V. Microprocesses of liquid extraction / Theor. Found. Chem. Eng. 2016. V. 50. № 4. P. 632. https://link.springer.com/article/10.1134/S0040579516040126
- Кизим Н.Ф., Голубина Е.Н. Накапливание некоторых редкоземельных элементов в динамическом межфазном слое экстракционной системы. // Химическая технология. 2009. Т. 10. № 5. С. 296.
Supplementary files


