On the Coplanar Integrable Case of the Twice-Averaged Hill Problem with Central Body Oblateness


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The twice-averaged Hill problem with the oblateness of the central planet is considered in the case where its equatorial plane coincides with the plane of its orbital motion relative to the perturbing body. A qualitative study of this so-called coplanar integrable case was begun by Y. Kozai in 1963 and continued by M.L. Lidov and M.V. Yarskaya in 1974. However, no rigorous analytical solution of the problem can be obtained due to the complexity of the integrals. In this paper we obtain some quantitative evolution characteristics and propose an approximate constructive-analytical solution of the evolution system in the form of explicit time dependences of satellite orbit elements. The methodical accuracy has been estimated for several orbits of artificial lunar satellites by comparison with the numerical solution of the evolution system.

作者简介

M. Vashkov’yak

Keldysh Institute of Applied Mathematics

编辑信件的主要联系方式.
Email: vashkov@keldysh.ru
俄罗斯联邦, Moscow, 125047

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Inc., 2018