The Fixed Points of Contractions of f-Quasimetric Spaces
- 作者: Zhukovskiy E.S.1
-
隶属关系:
- Tambov State University named after G. R. Derzhavin
- 期: 卷 59, 编号 6 (2018)
- 页面: 1063-1072
- 栏目: Article
- URL: https://journals.rcsi.science/0037-4466/article/view/172107
- DOI: https://doi.org/10.1134/S0037446618060095
- ID: 172107
如何引用文章
详细
The recent articles of Arutyunov and Greshnov extend the Banach and Hadler Fixed-Point Theorems and the Arutyunov Coincidence-Point Theorem to the mappings of (q1, q2)-quasimetric spaces. This article addresses similar questions for f-quasimetric spaces.
Given a function f: R +2 → R+ with f(r1, r2) → 0 as (r1, r2) → (0, 0), an f-quasimetric space is a nonempty set X with a possibly asymmetric distance function ρ: X2 → R+ satisfying the f-triangle inequality: ρ(x, z) ≤ f(ρ(x, y), ρ(y, z)) for x, y, z ∈ X. We extend the Banach Contraction Mapping Principle, as well as Krasnoselskii’s and Browder’s Theorems on generalized contractions, to mappings of f-quasimetric spaces.
作者简介
E. Zhukovskiy
Tambov State University named after G. R. Derzhavin
编辑信件的主要联系方式.
Email: zukovskys@mail.ru
俄罗斯联邦, Tambov
补充文件
