A monotone path-connected set with outer radially lower continuous metric projection is a strict sun


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A monotone path-connected set is known to be a sun in a finite-dimensional Banach space. We show that a B-sun (a set whose intersection with each closed ball is a sun or empty) is a sun. We prove that in this event a B-sun with ORL-continuous (outer radially lower continuous) metric projection is a strict sun. This partially converses one well-known result of Brosowski and Deutsch. We also show that a B-solar LG-set (a global minimizer) is a B-connected strict sun.

作者简介

A. Alimov

Moscow State University

编辑信件的主要联系方式.
Email: alexey.alimov-msu@yandex.ru
俄罗斯联邦, Moscow

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017